Structural landscape of photoreceptor synapses
感光器突触的结构景观
基本信息
- 批准号:10707351
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureBiochemicalBiochemistryBipolar NeuronBlindnessBrainCell AdhesionCell Adhesion MoleculesCellsCellular biologyCessation of lifeCollaborationsCommunicationComplexConeCone dystrophyCryoelectron MicroscopyDedicationsDiseaseElementsFunctional disorderG-Protein-Coupled ReceptorsGTP-Binding Protein RegulatorsGleanGlutamatesGoalsHumanIndiaInternationalLaboratoriesLightMembrane PotentialsMolecularMolecular StructureMutationNeuronsNeurotransmitter ReceptorNeurotransmittersNight BlindnessOcular PathologyOrphanPhotonsPhotoreceptorsPhototransductionPlayPresynaptic TerminalsProteinsRGS ProteinsRegulationResearchResolutionRetinaRetinal ConeRetinal DiseasesRodRoleSensorySignal TransductionSite-Directed MutagenesisStructureSynapsesSynaptic CleftSynaptic ReceptorsSynaptic TransmissionSystemVertebrate PhotoreceptorsVisionWorkcomorbidityexperimental studyextracellularfollow-upimprovedinterdisciplinary approachmacromolecular assemblynovel therapeutic interventionpostsynapticpresynapticprogramsprotein protein interactionreceptorreconstitutionresponsescaffoldsuccesssynaptic functiontherapy developmenttransmission processvirtualvisual processing
项目摘要
PROJECT SUMMARY
Rod and cone photoreceptors are indispensable for our vision. Their death or dysfunction is an underlying
cause for a vast majority of blinding retina conditions. Key to photoreceptor function is the ability to transmit the
signal that they generate in response to light to other neurons in the retina for processing of visual signals and
their communication to the brain. For this to occur, photoreceptors form elaborate synapses with the
downstream neurons, the bipolar cells (BC). Deficits in synaptic communication between photoreceptors and
bipolar cells are known to cause congenital stationary blindness in humans, various forms of rod/cone
dystrophies and frequent co-morbidity with many other ocular conditions. The long term goal of our collaborative
program is to obtain atomic level view of molecular organization of machinery that enable synaptic
communication of the photoreceptors with the hope to better understand blinding conditions and devising
strategies for their treatment.
Recent research from our laboratories and others have identified several molecules critical for the
synaptic communication of photoreceptors. We have further discovered that many of these components are
scaffolded into macromolecular assemblies that span the synaptic cleft and physically integrate pre-synaptic
elements of photoreceptors with post-synaptic receptors in BC. Specifically, we found that the postsynaptic
receptor on BC: mGluR6 interacts with two cell-adhesion molecules in photoreceptors: ELFN1 and ELFN2.
Furthermore, the machinery that drives excitation of BC in response to synaptic photoreceptor inputs is
associated with an orphan receptor GPR179 which in turn is integrated with pre-synaptic cell adhesion-like
molecule pikachurin (Pika) in photoreceptors. We also documented that loss of this organization abolishes
synaptic transmission leading to night blindness. However, at the moment we know absolutely nothing about
structural basis of these trans-synaptic complexes.
Proposed studies aim to fill this gap by determining the atomic structures of the key trans-synaptic
scaffolds: ELFN1-mGluR6 and Pika-GPR179 complexes and probing their biochemical mechanisms. This will
be achieved by highly synergistic international collaboration leveraging expertise in biochemistry and cell biology
of photoreceptor synaptic proteins and recent advances in high resolution cryogenic electron microscopy
(CryoEM) to obtain high resolution molecular structures of the complexes probing their mechanisms at
exceedingly precise level. The premise of this proposal is that understanding synaptic organization of
photoreceptors would lead to novel therapeutic strategies for ameliorating blindness.
项目摘要
对于我们的视力,杆和锥形感受器是必不可少的。他们的死亡或功能障碍是基础
导致绝大多数盲视网膜条件。光感受器函数的关键是传输的能力
信号表明,它们会响应视网膜中其他神经元的光来处理视觉信号和
他们与大脑的交流。为此,光感受器与
下游神经元,双极细胞(BC)。光感受器和
已知双极细胞在人类中引起先天性固定失明,各种形式的棒/锥体
在许多其他眼部条件下,营养不良和频繁的合并症。我们合作的长期目标
程序是为了获得启用突触的机械分子组织的原子级别视图
希望能够更好地了解盲目条件并设计的光感受器的通信
他们的治疗策略。
我们的实验室和其他人的最新研究确定了几个对人物至关重要的分子
光感受器的突触通信。我们进一步发现,其中许多组件是
脚手架成跨突触裂缝并物理整合突触的大分子组件
卑诗省具有后突触受体的光感受器的元素。具体来说,我们发现突触后的
BC上的受体:MGLUR6与感光体中的两个细胞粘附分子相互作用:ELFN1和ELFN2。
此外,响应突触光感受器输入而驱动BC激发的机械是
与孤儿受体GPR179相关,该孤儿受体与突触前细胞粘附一样集成
光感受器中的分子pikachurin(Pika)。我们还记录了失去该组织的废除
突触传播导致夜失明。但是,目前我们对
这些反射突触复合物的结构基础。
拟议的研究旨在通过确定关键反式突触的原子结构来填补这一空白
脚手架:ELFN1-MGLUR6和PIKA-GPR179复合物,并探测其生化机制。这会
可以通过高度协同的国际合作来实现生物化学和细胞生物学专业知识
光感受器突触蛋白以及高分辨率低温电子显微镜的最新进展
(冷冻)获得探测其机制的配合物的高分辨率分子结构
非常精确的水平。该提议的前提是了解
感光细胞将导致新型的治疗策略,以改善失明。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill A. Martemyanov其他文献
Receptor-dependent influence of R7 RGS proteins on neuronal GIRK channel signaling dynamics
- DOI:
10.1016/j.pneurobio.2024.102686 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Haichang Luo;Allison Anderson;Ikuo Masuho;Ezequiel Marron Fernandez de Velasco;Lutz Birnbaumer;Kirill A. Martemyanov;Kevin Wickman - 通讯作者:
Kevin Wickman
Direct expression of PCR products in a cell‐free transcription/translation system: synthesis of antibacterial peptide cecropin
PCR产物在无细胞转录/翻译系统中的直接表达:抗菌肽天蚕素的合成
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.5
- 作者:
Kirill A. Martemyanov;Alexander S. Spirin;Anatoly T. Gudkov - 通讯作者:
Anatoly T. Gudkov
Mechanisms of Gβγ Release upon GPCR Activation
- DOI:
10.1016/j.tibs.2021.05.002 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:
- 作者:
Kirill A. Martemyanov - 通讯作者:
Kirill A. Martemyanov
Kirill A. Martemyanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill A. Martemyanov', 18)}}的其他基金
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
- 批准号:
10659438 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
10358596 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
Orphan Receptors in Regulation of Neuronal G Protein Signaling
神经元 G 蛋白信号传导调节中的孤儿受体
- 批准号:
8958189 - 财政年份:2015
- 资助金额:
$ 48.3万 - 项目类别:
相似国自然基金
森林冠层LAI和叶片生化参数遥感协同反演关键方法研究
- 批准号:41801251
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
盐和污水胁迫下红树植物生化组分高光谱反演
- 批准号:41601362
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
极大倾角光纤光栅SPR的超痕量生化传感基础研究
- 批准号:61505017
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于准连续中红外频率梳的微纳生化传感关键器件研究
- 批准号:61405139
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于小波分析的作物冠层结构与生理生化参数光谱响应分解研究
- 批准号:31470084
- 批准年份:2014
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Regulation of Genome Stability and Structure by the Nucleosome Remodeler HELLS in Leukemia
核小体重塑者 HELLS 对白血病基因组稳定性和结构的调节
- 批准号:
10818668 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别: