Novel mechanisms of DNA repair and cell cycle regulation in bacteria
细菌 DNA 修复和细胞周期调控的新机制
基本信息
- 批准号:10559506
- 负责人:
- 金额:$ 37.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAntibiotic ResistanceAntibiotic TherapyBacillus subtilisBacteriaBacterial Antibiotic ResistanceCell CycleCell Cycle CheckpointCell Cycle ProgressionCell Cycle RegulationCell ProliferationCell Proliferation RegulationCellsDNADNA DamageDNA RepairDNA Repair PathwayDNA Sequence RearrangementDNA damage checkpointDefectDiseaseDisinfectantsEconomic BurdenEnvironmentExcision RepairExposure toGenesGenomeGoalsGram-Positive BacteriaGrowthHealthcareHealthcare SystemsHospitalsHumanImpairmentLeadListeria monocytogenesMalignant NeoplasmsMedicineMutationNosocomial InfectionsOrganismPathway interactionsProcessProliferatingProteinsRecoveryResearchSourceStressUnited Statesantimicrobialcare burdenclinically relevantcopingenvironmental stressorexperimental studygene productgenome integritygenome-widehuman pathogenmethicillin resistant Staphylococcus aureusnovelpathogenpathogenic bacteriarepairedresponse
项目摘要
Project Summary:
A major problem in medicine today is the emergence and persistence of antibiotic resistant bacteria. Although
bacteria have evolved several strategies to grow in harsh environments, many bacterial species broadly cope
in unfavorable conditions by regulating growth and through inducing DNA damage responses. In fact, all
organisms respond to DNA damage by enlisting DNA repair pathways and by regulating cell cycle progression.
Bacterial cells are constantly exposed to a broad spectrum of DNA damage caused by intracellular sources,
environmental stressors, antibiotic treatments, and disinfectants applied in hospital settings. Although DNA
repair and cell cycle checkpoints have been well studied in some bacteria, far less is known about these
processes in Gram-positive bacteria. One major challenge is that even for the most well studied Gram-positive
bacterium, Bacillus subtilis, almost half of the genes in the genome are of unknown function, representing a
critical and fundamental gap in our understanding of how these bacteria mitigate stress that affects growth and
proliferation. While Bacillus subtilis does not cause disease, it is closely related to a number of important
human pathogens, including Methicillin-resistant Staphylococcus aureus, Listeria monocytogenes and several
other pathogens that are responsible for many hospital-acquired infections, which impose significant economic
burdens on our healthcare system annually. Therefore, it is important to understand how a broad group of
clinically relevant bacteria respond to DNA damage and regulate cell proliferation. The long-term goal of this
research is to understand the contribution of unstudied genes and novel mechanisms to DNA repair and cell
cycle regulation in Gram-positive bacteria. We used large-scale genome-wide approaches to identify several
uncharacterized genes that are highly conserved among Gram-positive bacteria and critical for DNA repair and
regulation of cell proliferation. Two of these gene products define a new DNA excision repair pathway while
four other genes are critical for DNA damage checkpoint recovery, allowing cells to re-enter the cell cycle after
the damage has been repaired. We expand these experiments to continue to identify novel interactions with
regulatory partners that control initiation timing and cell proliferation. We expect these studies will result in the
complete mechanistic characterization of proteins involved in initiation, DNA repair, and cell cycle checkpoints.
All of the genes we propose to study are either essential or cause severe growth defects when impaired,
underscoring their importance as possible targets for novel antimicrobial therapies.
项目概要:
当今医学的一个主要问题是抗生素耐药性细菌的出现和持续存在。虽然
细菌已经进化出多种在恶劣环境中生长的策略,许多细菌物种广泛应对
在不利条件下通过调节生长和诱导 DNA 损伤反应。事实上,所有
生物体通过利用 DNA 修复途径和调节细胞周期进程来应对 DNA 损伤。
细菌细胞不断暴露于由细胞内来源引起的广泛 DNA 损伤,
环境压力源、抗生素治疗和医院环境中使用的消毒剂。虽然DNA
修复和细胞周期检查点已在某些细菌中得到充分研究,但人们对这些知之甚少
革兰氏阳性菌中的过程。一个主要的挑战是,即使对于研究最深入的革兰氏阳性菌来说,
细菌,枯草芽孢杆菌,基因组中几乎一半的基因功能未知,代表了
我们对这些细菌如何减轻影响生长和发育的压力的理解存在关键和根本的差距
增殖。虽然枯草芽孢杆菌不会引起疾病,但它与许多重要的疾病密切相关。
人类病原体,包括耐甲氧西林金黄色葡萄球菌、单核细胞增多性李斯特菌和多种
其他病原体导致许多医院获得性感染,这对经济造成重大影响
每年给我们的医疗保健系统带来负担。因此,了解广泛的群体如何
临床相关细菌对 DNA 损伤做出反应并调节细胞增殖。本次活动的长远目标
研究的目的是了解未研究的基因和新机制对 DNA 修复和细胞的贡献
革兰氏阳性菌的循环调节。我们使用大规模全基因组方法来识别几个
未表征的基因在革兰氏阳性细菌中高度保守,对 DNA 修复和修复至关重要
细胞增殖的调节。其中两个基因产物定义了新的 DNA 切除修复途径,同时
另外四个基因对于 DNA 损伤检查点恢复至关重要,使细胞能够在修复后重新进入细胞周期。
损坏已修复。我们扩展这些实验以继续识别与
控制起始时间和细胞增殖的监管伙伴。我们预计这些研究将导致
参与起始、DNA 修复和细胞周期检查点的蛋白质的完整机制表征。
我们建议研究的所有基因要么是必需的,要么在受损时导致严重的生长缺陷,
强调它们作为新型抗菌疗法的可能靶标的重要性。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Bacillus subtilis PriA Winged Helix Domain Is Critical for Surviving DNA Damage.
枯草芽孢杆菌 PriA 有翼螺旋结构域对于 DNA 损伤的存活至关重要。
- DOI:
- 发表时间:2022-03-15
- 期刊:
- 影响因子:3.2
- 作者:Matthews, Lindsay A;Simmons, Lyle A
- 通讯作者:Simmons, Lyle A
Bacillus subtilis encodes a discrete flap endonuclease that cleaves RNA-DNA hybrids.
枯草芽孢杆菌编码一种离散的瓣状核酸内切酶,可切割 RNA-DNA 杂合体。
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:4.5
- 作者:Lowder, Frances Caroline;Simmons, Lyle A
- 通讯作者:Simmons, Lyle A
Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB.
丝裂霉素 C 修复核酸外切酶 MrfB 的结构和生化特征。
- DOI:
- 发表时间:2024-02-17
- 期刊:
- 影响因子:0
- 作者:Manthei, Kelly A;Munson, Lia M;Nandakumar, Jayakrishnan;Simmons, Lyle A
- 通讯作者:Simmons, Lyle A
Regulation of Cell Division in Bacteria by Monitoring Genome Integrity and DNA Replication Status.
通过监测基因组完整性和 DNA 复制状态来调节细菌细胞分裂。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:3.2
- 作者:Burby, Peter E;Simmons, Lyle A
- 通讯作者:Simmons, Lyle A
Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB.
丝裂霉素 C 修复核酸外切酶 MrfB 的结构和生化特征。
- DOI:
- 发表时间:2024-04-25
- 期刊:
- 影响因子:14.9
- 作者:Manthei, Kelly A;Munson, Lia M;Nandakumar, Jayakrishnan;Simmons, Lyle A
- 通讯作者:Simmons, Lyle A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lyle Simmons其他文献
Lyle Simmons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lyle Simmons', 18)}}的其他基金
Novel mechanisms of DNA repair and cell cycle regulation in bacteria
细菌 DNA 修复和细胞周期调控的新机制
- 批准号:
10334406 - 财政年份:2019
- 资助金额:
$ 37.31万 - 项目类别:
Novel mechanisms of DNA repair and cell cycle regulation in bacteria
细菌 DNA 修复和细胞周期调控的新机制
- 批准号:
9922340 - 财政年份:2019
- 资助金额:
$ 37.31万 - 项目类别:
Novel mechanisms of DNA repair and cell cycle regulation in bacteria
细菌 DNA 修复和细胞周期调控的新机制
- 批准号:
10090614 - 财政年份:2019
- 资助金额:
$ 37.31万 - 项目类别:
相似国自然基金
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
- 批准号:32300154
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
- 批准号:32360830
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
- 批准号:82273586
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
Investigating phage therapy for the treatment of urinary tract infections
研究噬菌体疗法治疗尿路感染
- 批准号:
10677257 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
“Protection from MRSA lethality by inhibiting LXRα phosphorylation”
– 通过抑制 LXRα 磷酸化来防止 MRSA 致死 –
- 批准号:
10681027 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别:
The role of master regulator NtrC in amyloid fibril dependent pathogenic traits of Pseudomonas aeruginosa
主调节因子 NtrC 在铜绿假单胞菌淀粉样原纤维依赖性致病性状中的作用
- 批准号:
10652868 - 财政年份:2023
- 资助金额:
$ 37.31万 - 项目类别: