ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
基本信息
- 批准号:10734591
- 负责人:
- 金额:$ 87.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-03 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionAffinityAutomationBacteriaBacteriophagesBindingBinding ProteinsBiologicalBiosensing TechniquesBiotechnologyCellsChemicalsClinical TreatmentClustered Regularly Interspaced Short Palindromic RepeatsDNADNA IntegrationDetectionDevelopmentDimensionsDirected Molecular EvolutionDiseaseEngineeringEvolutionFactor IXGenerationsGenesGenetic DiseasesGenomeGenomicsGenotypeGoalsGuide RNAHeadHemophilia BHepatocyteHomologous GeneHumanHuman Cell LineHuman GenomeLaboratoriesLigandsMammalian CellMedicineMethodsMissionMutationPathway interactionsPharmaceutical PreparationsPopulationProcessProtein EngineeringProteinsProtocols documentationReportingRoboticsScheduleSchemeSiteSpeedStandardizationSystemTechniquesTechnologyTherapeuticToxinTransgenesTransposaseVariantWorkantibody engineeringarmcancer immunotherapycellular engineeringcombinatorialcostdesigngenomic locushuman diseaseimprovedinterestloss of functionmammalian genomemetabolic engineeringminiaturizenew technologynext generationnoveloperationparallelizationsmall moleculesuccesssynthetic biologytechnology developmenttheoriestherapeutic genome editingtherapeutic proteintoolvirtual
项目摘要
PROJECT SUMMARY
The recent development of continuous directed evolution (CDE) methods has made it increasingly possible to
generate biomolecules with radically altered or even new functions capable of addressing unmet needs in
medicine, biotechnology, and synthetic biology. By transforming the traditional stepwise process of classical
directed evolution into one that operates continuously in cells, these CDE methods, such as Phage-Assisted
Continuous Evolution (PACE), can theoretically enable extensive speed, scale, and depth in an evolutionary
search. However, the technical limitations of implementing PACE (and other CDE techniques) have restricted
what can be practically achieved with these approaches alone. To overcome these limitations, our collaborative
team recently established ePACE, a new technology that combines PACE with an automated, scalable, and
customizable continuous culture platform, called eVOLVER. By on-boarding the infrastructural and fluidic
requirements of PACE onto eVOLVER, we overcame many of the limitations of traditional PACE and unlocked
pathways for automated, parallel, and continuous evolution of biomolecules. Using ePACE, we already
succeeded in generating biomedically-relevant molecules, including the multiplexed evolution of Cas9 for
precision gene editing at previously-inaccessible genomic target sites. In this project, we will advance the
capabilities of ePACE in two critical dimensions – scale and accessibility – through new hardware and fluidic
technology developments. These developments will enable novel CDE schemes necessary to tackle new
challenges in biomolecular engineering. The first challenge we will tackle is engineering systems for targeted
integration of large, gene-sized DNA payloads in mammalian cells, which would enable diverse biomedical
applications, including therapeutic treatments for virtually any loss-of-function disease. We will apply ePACE for
highly parallelized evolution of CRISPR-associated transposases (CASTs) — recently discovered, multi-
component systems that enable programmable integration of large DNA in bacteria — to generate variants with
robust mammalian genomic integration activity. To effectively explore the combinatorial space of CAST
components, we will develop an ultra-high-throughput eVOLVER variant that facilitates ePACE evolutions at
unprecedented scale and dramatically increases the number of evolutionary trajectories explored. The second
challenge is establishing generalizable methods to evolve proteins for tight and selective binding of small-
molecule ligands, which would enable diverse biomedical applications, including biosensing and detection,
metabolic engineering, and drug and toxin sequestration. As part of this goal, we will deliver on the broader
mission of democratizing CDE by developing a miniaturized, ultra-low-cost eVOLVER variant that facilitates
PACE functionality, and use it to establish general pipelines that can be easily adopted by labs with minimal
financial and technical overhead. Together, this work will substantially expand the capabilities of CDE while
producing bespoke biomolecules for unmet biomedical needs.
项目概要
连续定向进化(CDE)方法的最新发展使得越来越有可能
产生具有根本性甚至新功能的生物分子,能够满足未满足的需求
医学、生物技术和合成生物学通过改变传统的经典逐步过程。
这些 CDE 方法,例如噬菌体辅助方法,将进化定向为在细胞中连续运行的方法
持续进化(PACE),理论上可以在进化中实现广泛的速度、规模和深度
然而,实施 PACE(和其他 CDE 技术)的技术限制受到了限制。
为了克服这些限制,我们的合作可以实现什么。
团队最近建立了 ePACE,这是一项将 PACE 与自动化、可扩展和
可定制的连续培养平台,称为 eVOLVER。
将PACE的要求移植到eVOLVER上,我们克服了传统PACE的诸多限制并解锁了
使用 ePACE,我们已经实现了生物分子并行、连续进化的自动化途径。
成功生成生物医学相关分子,包括 Cas9 的多重进化
在这个项目中,我们将推进以前无法访问的基因组靶位点的精确基因编辑。
ePACE 通过新的硬件和流体在两个关键维度上的能力——规模和可访问性
这些发展将使新的 CDE 计划成为解决新问题所必需的。
我们要解决的第一个挑战是生物分子工程的工程系统。
将大型基因大小的 DNA 有效负载整合到哺乳动物细胞中,这将使多样化的生物医学成为可能
应用,包括几乎所有功能丧失疾病的治疗方法,我们将应用 ePACE 来治疗。
CRISPR 相关转座酶 (CAST) 的高度并行进化——最近发现的多
能够对细菌中的大DNA进行可编程集成的组件系统——以生成变体
强大的哺乳动物基因组整合活性,有效探索 CAST 的组合空间。
组件,我们将开发一种超高吞吐量的 eVOLVER 变体,以促进 ePACE 的进化
第二个是前所未有的规模,并显着增加了探索的进化轨迹的数量。
面临的挑战是建立通用方法来进化蛋白质,以紧密和选择性地结合小分子
分子配体,这将使多种生物医学应用成为可能,包括生物传感和检测,
作为这一目标的一部分,我们将实现更广泛的目标。
通过开发小型化、超低成本的 eVOLVER 变体来实现 CDE 民主化的使命
PACE 功能,并使用它来建立通用管道,实验室可以轻松采用
总之,这项工作将大大扩展 CDE 的能力,同时
生产定制生物分子以满足未满足的生物医学需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmad Samir Khalil其他文献
Ahmad Samir Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmad Samir Khalil', 18)}}的其他基金
2023 Synthetic Biology Gordon Research Conference and Gordon Research Seminar
2023年合成生物学戈登研究大会暨戈登研究研讨会
- 批准号:
10753604 - 财政年份:2023
- 资助金额:
$ 87.15万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10503736 - 财政年份:2022
- 资助金额:
$ 87.15万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10642891 - 财政年份:2022
- 资助金额:
$ 87.15万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10380832 - 财政年份:2020
- 资助金额:
$ 87.15万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10153781 - 财政年份:2020
- 资助金额:
$ 87.15万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10584605 - 财政年份:2020
- 资助金额:
$ 87.15万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10391333 - 财政年份:2019
- 资助金额:
$ 87.15万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10113365 - 财政年份:2019
- 资助金额:
$ 87.15万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
9925776 - 财政年份:2019
- 资助金额:
$ 87.15万 - 项目类别:
Combatting antibiotic resistance with synthetic biology technologies
利用合成生物学技术对抗抗生素耐药性
- 批准号:
9167953 - 财政年份:2016
- 资助金额:
$ 87.15万 - 项目类别:
相似国自然基金
适当冷暴露通过肠道菌群调控心脏免疫微环境改善心梗后心室重构和心力衰竭的作用与机制
- 批准号:82330014
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
SIRT1通过TXNIP/NLRP3通路促进巨噬细胞自噬在烟曲霉感染中的作用及机制研究
- 批准号:82360624
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
心外膜细胞中BRD4通过促进MEOX-1表达激活TGF-β信号通路参与糖尿病心肌病纤维化形成的分子机制研究
- 批准号:82300398
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
- 批准号:32302098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 87.15万 - 项目类别:
Improving Diagnosis in Gastrointestinal Cancer: Integrating Prediction Models into Routine Clinical Care
改善胃肠癌的诊断:将预测模型纳入常规临床护理
- 批准号:
10641060 - 财政年份:2023
- 资助金额:
$ 87.15万 - 项目类别:
Dissemination of the Human Neocortical Neurosolver (HNN) software for circuit level interpretation of human MEG/EEG
传播用于人类 MEG/EEG 电路级解释的人类新皮质神经解算器 (HNN) 软件
- 批准号:
10726032 - 财政年份:2023
- 资助金额:
$ 87.15万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 87.15万 - 项目类别: