Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
基本信息
- 批准号:10503736
- 负责人:
- 金额:$ 86.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAerobicAnaerobic BacteriaAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAtmosphereAutomationAutomobile DrivingBioreactorsClinicalCommunitiesComplexDrug resistanceEcologyEcosystemEnvironmentEscherichia coliEvolutionFeedbackGasesGeneticGrowthHumanHuman MicrobiomeIndividualInfectionLaboratoriesLifeMapsMicrobeMicrobial Antibiotic ResistanceMutationNatureOrganismOutcomeOxygenPathogenicityPathway interactionsPharmaceutical PreparationsPopulationPopulation GeneticsPrevention strategyProbioticsPublic HealthResearchResearch PersonnelResistanceRoleSamplingScheduleSchemeSiteSourceSystemTechnologyTimeWorkatmospheric conditionsbacterial communitybasecostcost effectiveemerging antibiotic resistanceemerging antimicrobial resistanceexperimental studyfitnessgenetic approachgenetic elementglobal healthgut microbesgut microbiomegut microbiotahigh throughput technologyin vivoinstrumentmembermetagenomic sequencingmicrobialmicrobiome researchmulti-drug resistant pathogennovelopen sourcepathogenpathogenic bacteriapathogenic microbepreventprogramsresistance mutationsuccesstooltreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
Antibiotic-resistant microbial pathogens are a grave and urgent threat to public health. With rising rates of drug-
resistant infections and a diminishing arsenal of new antibiotic treatments, there is pressing need for
approaches to better understand, predict, and prevent the emergence of antimicrobial resistance (AMR). To
this end, experimental evolution approaches, in which microbial organisms are evolved in the laboratory in
user-defined conditions, provide a powerful paradigm to define the evolutionary paths toward AMR. This
approach has illuminated genetic pathways to evolving resistance, and can define factors that can be exploited
to steer toward drug-susceptible states and guide new clinical strategies. However, the potential of this
approach for understanding AMR evolution is fundamentally constrained by technological barriers in
conducting continuous culture and evolution experiments, which requires the following key capacities: 1) Scale
to evolve across a diversity of microbes, experimental conditions, and antibiotics; 2) Automation for frequent
perturbations and feedback over long experimental time scales; 3) Control to reproduce key features of the
mammalian gut environment, a primary site for the evolution of AMR in vivo. All existing tools fail in one or
more of these capacities. And critically, laboratory evolution studies fail to account for how interactions within
bacterial communities impact the evolutionary trajectory, dynamics, and outcomes of AMR. We propose to fill
this technological and experimental void by developing a first-in-class, benchtop technology for scalable,
automated, and controlled microbial evolution studies, and apply it to two pressing problems in AMR. Because
the gut environment is depleted of oxygen (anaerobic), and current technology lacks complete oxygen control,
we will first develop a system for individual control of atmospheric conditions across mini-bioreactors
(atmostat). We will achieve this in the eVOLVER platform, an open-source microbial culture system for
automated control of growth conditions that is easily adapted to new control features, and is exceedingly
scalable. Preliminary results of eVOLVER-atmostat demonstrate unprecedented scale for continuous
culture and evolution of strict anaerobic gut microbes on the benchtop. The first study will determine the
effects of oxygen tension on the mutational fitness landscapes of AMR in E. coli strains. We will implement an
automated antibiotic selection regime in combination with atmostat control of oxygen gradients, and employ
metagenomic sequencing to map the interactions of oxygen, antibiotics, and strains backgrounds in AMR. The
second study will determine how AMR emerges in the ecological context of the gut microbiome, by evolving E.
coli strains with a gut community across multiple antibiotics. Applying state-of-the-art abundance quantification
over time and population genetics approaches, we will define both the ecological and evolutionary landscape
of E. coli in the gut community. Collectively, this work will produce a transformative technology to be used by
researchers worldwide, and begin to reveal how pathogens evolve AMR in the human gut ecosystem.
项目概要/摘要
耐抗生素微生物病原体对公众健康构成严重而紧迫的威胁。随着吸毒率的上升
由于耐药性感染和新抗生素治疗方法的不断减少,迫切需要
更好地了解、预测和预防抗菌素耐药性 (AMR) 出现的方法。到
为此,实验进化方法,其中微生物有机体在实验室中进化
用户定义的条件,提供了一个强大的范例来定义 AMR 的进化路径。这
该方法阐明了耐药性进化的遗传途径,并且可以定义可以利用的因素
引导药物敏感状态并指导新的临床策略。然而,这种潜力
理解 AMR 演变的方法从根本上受到技术障碍的限制
进行连续的培养和进化实验,需要以下关键能力:1)规模
在多种微生物、实验条件和抗生素中进化; 2) 频繁的自动化
长时间实验时间范围内的扰动和反馈; 3) 控制重现关键特征
哺乳动物肠道环境是体内 AMR 进化的主要场所。所有现有工具都会在一个或多个方面失败
更多这些能力。至关重要的是,实验室进化研究未能解释内部相互作用如何
细菌群落影响抗菌素耐药性的进化轨迹、动态和结果。我们建议填写
通过开发一流的、可扩展的台式技术来弥补这种技术和实验空白,
自动化、受控的微生物进化研究,并将其应用于 AMR 中的两个紧迫问题。因为
肠道环境缺氧(厌氧),而目前的技术缺乏完全的氧气控制,
我们将首先开发一个单独控制微型生物反应器大气条件的系统
(自动调节器)。我们将在 eVOLVER 平台中实现这一目标,这是一个开源微生物培养系统,用于
生长条件的自动控制,很容易适应新的控制功能,并且非常有效
可扩展。 eVOLVER-atmostat 的初步结果展示了前所未有的连续规模
在台式严格厌氧肠道微生物的培养和进化。第一项研究将确定
氧张力对大肠杆菌菌株 AMR 突变适应性的影响。我们将实施一个
自动抗生素选择方案与氧气梯度的恒温器控制相结合,并采用
宏基因组测序可绘制 AMR 中氧气、抗生素和菌株背景的相互作用。这
第二项研究将通过进化大肠杆菌来确定 AMR 在肠道微生物群的生态环境中是如何出现的。
具有跨多种抗生素的肠道群落的大肠杆菌菌株。应用最先进的丰度定量
随着时间的推移和群体遗传学方法的发展,我们将定义生态和进化景观
肠道群落中的大肠杆菌。总的来说,这项工作将产生一种变革性的技术,供
世界各地的研究人员开始揭示病原体如何在人类肠道生态系统中进化出 AMR。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmad Samir Khalil其他文献
Ahmad Samir Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmad Samir Khalil', 18)}}的其他基金
2023 Synthetic Biology Gordon Research Conference and Gordon Research Seminar
2023年合成生物学戈登研究大会暨戈登研究研讨会
- 批准号:
10753604 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Programmable benchtop bioreactors for scalable eco-evolutionary dynamics of the human microbiome
用于人类微生物组可扩展生态进化动力学的可编程台式生物反应器
- 批准号:
10642891 - 财政年份:2022
- 资助金额:
$ 86.76万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10380832 - 财政年份:2020
- 资助金额:
$ 86.76万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10153781 - 财政年份:2020
- 资助金额:
$ 86.76万 - 项目类别:
Synthetic toolkit for precision gene expression control and signal processing in mammalian cells
用于哺乳动物细胞中精确基因表达控制和信号处理的合成工具包
- 批准号:
10584605 - 财政年份:2020
- 资助金额:
$ 86.76万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10391333 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10113365 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
9925776 - 财政年份:2019
- 资助金额:
$ 86.76万 - 项目类别:
Combatting antibiotic resistance with synthetic biology technologies
利用合成生物学技术对抗抗生素耐药性
- 批准号:
9167953 - 财政年份:2016
- 资助金额:
$ 86.76万 - 项目类别:
相似国自然基金
基于PXDN-周细胞-血管渗漏轴探讨有氧运动改善肺血管重构机制研究
- 批准号:82370422
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
代谢产物丁酸介导的PKM2乳酸化修饰调控小胶质细胞极化参与有氧运动发挥脑梗死后神经保护作用的机制研究
- 批准号:82302861
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧运动依赖ABCG1调节的GSK-3β/Nrf2/ARE抗氧化机制预防化疗药物5氟尿嘧啶诱导的血管内皮损伤机制探索
- 批准号:82360608
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
NEDD4介导IGFBP7泛素化参与有氧运动抑制泛凋亡改善心肌缺血再灌注损伤的机制研究
- 批准号:82302873
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有氧康复运动抑制心外膜脂肪组织Th17细胞分化改善HFpEF所致心房颤动实验研究
- 批准号:82372581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The role of anaerobic microbiota in cystic fibrosis airway disease trajectory
厌氧微生物群在囊性纤维化气道疾病轨迹中的作用
- 批准号:
10716654 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Targeting cytochrome bd as an anti-biofilm strategy
靶向细胞色素 bd 作为抗生物膜策略
- 批准号:
10642243 - 财政年份:2023
- 资助金额:
$ 86.76万 - 项目类别:
Mechanistic Investigation of Copper-Dependent Peptide Cyclases for Macrocycle Engineering
用于大环工程的铜依赖性肽环化酶的机理研究
- 批准号:
10464289 - 财政年份:2022
- 资助金额:
$ 86.76万 - 项目类别:
Obesogenic diet-induced intestinal epithelium repair responses link dysbiosis and cardiovascular disease
肥胖饮食诱导的肠上皮修复反应将生态失调与心血管疾病联系起来
- 批准号:
10345474 - 财政年份:2022
- 资助金额:
$ 86.76万 - 项目类别:
Defining the antibody interface between Mycobacterium tuberculosis and host immunity
定义结核分枝杆菌与宿主免疫之间的抗体界面
- 批准号:
10365049 - 财政年份:2021
- 资助金额:
$ 86.76万 - 项目类别: