COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
基本信息
- 批准号:10733696
- 负责人:
- 金额:$ 152.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteAcute DiseaseAdolescentAdultAffectAppendicitisBiochemicalBiologicalBiological FactorsBiological MarkersBlood specimenCOVID-19COVID-19 pandemicCharacteristicsChildChildhoodChronicClinicalClinical DataCommunitiesDataDiagnosisDiagnosticDiseaseEnvironmental Risk FactorEpidemiologyExposure toFundingGeneticGenetic PolymorphismGoalsHealth Information SystemHealthcareHeart DiseasesImmune responseImmunologicsIndividualInfectionInflammatoryInformation SystemsInpatientsInterventionKnowledgeKnowledge ManagementLifeLung diseasesMachine LearningMaternal and Child HealthMeasurementModelingMorbidity - disease rateMultisystem Inflammatory Syndrome in ChildrenObesityOutpatientsPathogenicityPatient RecruitmentsPediatric HospitalsPhasePopulationPublic HealthRADxRare DiseasesReportingResearchRespiratory Signs and SymptomsRheumatologyRiskRisk FactorsRuptureSARS-CoV-2 infectionSeriesSeveritiesSocial SciencesSpecific qualifier valueSurveysSymptomsSyndromeSystemTestingTimeUnited States Health Resources and Services AdministrationVirusYouthcase findingcoronavirus diseasedata integrationdata resourcedevelopmental diseaseepidemiologic dataimprovedinfection riskmortalitymultidimensional datapredictive markerpredictive modelingpreventrisk predictionsaliva samplesevere COVID-19socialsocial determinantssociodemographicstranslational approach
项目摘要
The SARS-CoV-2 pandemic has manifested in children with a wide spectrum of clinical presentations ranging
from asymptomatic infection to devastating acute respiratory symptoms, appendicitis (often with rupture), and
Multisystem Inflammatory Syndrome in Children (MIS-C), a serious inflammatory condition presenting several
weeks after exposure to or infection with the virus. These presentations overlap in their clinical severity while
maintaining distinct clinical profiles. Public health and clinical approaches will benefit from an improved
understanding of the spectrum of illness associated with SARS CoV-2 and from the capacity to integrate data to
achieve two goals: (i) to identify the clinical, social, and biological variables that predict severe COVID-19 and
MIS-C, and (ii) to target those populations and individuals at greatest risk for harm from the virus. We propose
the COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness
in Children (CONNECT to Predict SIck Children) comprising eight partners providing access to data on >15
million children. Our network will systematically integrate social, epidemiological, genetic, immunological, and
computational approaches to identify both population- and individual-level risk factors for severe illness. Our
underlying hypothesis is that a combination of multidimensional data – clinical, sociodemographic, epidemiologic,
and biological -- can be integrated to predict which children are at greatest risk to have severe consequences
from SARS-CoV-2 infection. To test our hypothesis, we will develop CONNECT to Predict SIck Children, a
network of networks that leverages inpatient, outpatient, community, and epidemiological data resources to
support the analysis of large data using machine learning and model-based analyses. For the R61 phase, we
will develop and refine predictive models using data from our network of networks (Aim 1). We will also recruit
participants previously diagnosed with either COVID-19 or MIS-C (along with appropriate controls who have had
mild or asymptomatic infections with SARS-CoV2), who will provide survey data (including social determinants)
and saliva and blood samples to identify persisting biological factors associated with severe disease (Aim 2). We
will iteratively assess our models using a knowledge management framework that considers the marginal value
of data for improving models' predictive capacity over time. In the R33 phase, we will validate and further refine
predictive models incorporating data from additional participants recruited throughout our network of networks,
including newly infected children with severe COVID-19 or MIS-C identified through real-time surveillance (Aim
3). We seek to develop predictive models for children and adolescents that are useful, sensitive to community
and environmental contexts, and informed by the REASSURED framework specified by the RFA. The models
and biomarkers developed through our nationwide network of networks will produce generalizable knowledge
that will improve our ability to predict which children are at greatest risk for severe complications of SARS-CoV-
2 infection. This knowledge will facilitate interventions to prevent and treat severe pediatric illness.
SARS-CoV-2 大流行已在儿童中出现,其临床表现多种多样,包括:
从无症状感染到毁灭性的急性呼吸道症状、阑尾炎(通常伴有破裂)和
儿童多系统炎症综合征 (MIS-C),一种严重的炎症性疾病,可导致多种症状
接触或感染病毒几周后,这些表现的临床严重程度有所重叠。
保持独特的临床特征将受益于改进的公共卫生和临床方法。
了解与 SARS CoV-2 相关的疾病谱以及整合数据的能力
实现两个目标:(i) 确定预测重症 COVID-19 的临床、社会和生物变量
MIS-C,以及 (ii) 针对受病毒伤害风险最大的人群和个人。
COVID-19 网络网络扩展预测严重疾病的临床和转化方法
儿童(CONNECT to Predict SIck Children)由八个合作伙伴组成,提供 >15 岁以上的数据访问
我们的网络将系统地整合社会、流行病学、遗传、免疫学和
确定人群和个人层面的严重疾病风险因素的计算方法。
基本假设是多维数据的组合——临床、社会人口学、流行病学、
和生物学——可以综合起来预测哪些儿童最有可能遭受严重后果
为了检验我们的假设,我们将开发 CONNECT 来预测生病的儿童,这是一个
利用住院患者、门诊患者、社区和流行病学数据资源来
支持使用机器学习和基于模型的分析来分析大数据。对于 R61 阶段,我们。
将使用我们网络中的数据开发和完善预测模型(目标 1)。
之前被诊断患有 COVID-19 或 MIS-C 的参与者(以及曾经患有过类似疾病的适当对照)
SARS-CoV2 轻度或无症状感染者),谁将提供调查数据(包括社会决定因素)
唾液和血液样本,以确定与严重疾病相关的持续生物因素(目标 2)。
将使用考虑边际价值的知识管理框架迭代评估我们的模型
随着时间的推移,我们将验证并进一步完善模型的预测能力。
预测模型结合了我们在整个网络中招募的其他参与者的数据,
包括通过实时监测发现的患有严重 COVID-19 或 MIS-C 的新感染儿童(Aim
3) 我们寻求为儿童和青少年开发有用且对社区敏感的预测模型。
和环境背景,并由 RFA 指定的 REASSURED 框架提供信息。
通过我们全国网络开发的生物标志物将产生普遍的知识
这将提高我们预测哪些儿童最有可能罹患 SARS-CoV 严重并发症的能力
2 感染。这些知识将有助于预防和治疗严重儿科疾病的干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Laura Gennaro其他文献
Pragmatic Return to Effective Dental Infection Control through Triage and Testing (PREDICT): A feasibility study to improve dental office safety
通过分诊和测试务实地回归有效的牙科感染控制(PREDICT):提高牙科诊所安全性的可行性研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
J. Fredericks;Cecile A Feldman;V. Allareddy;Ellen Funkhouser;MaryAnn McBurnie;Cyril Meyerowitz;Pat Ragusa;Julie Chapman;Modupe Coker;D. Fine;Maria Laura Gennaro;Gayathri Subramanian - 通讯作者:
Gayathri Subramanian
A site-specific recombination function in Staphylococcus aureus plasmids
金黄色葡萄球菌质粒中的位点特异性重组功能
- DOI:
10.1128/jb.169.6.2601-2610.1987 - 发表时间:
1987-06-01 - 期刊:
- 影响因子:3.2
- 作者:
Maria Laura Gennaro;J. Kornblum;R. P. Novick - 通讯作者:
R. P. Novick
Immunological Characterization of Antigens Encoded by the RD1 Region of the Mycobacterium tuberculosis Genome
结核分枝杆菌基因组 RD1 区域编码抗原的免疫学特征
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:3.7
- 作者:
P. Brusasca;Roberto Colangeli;Konstantin P. Lyashchenko;X. Zhao;M. Vogelstein;J. Spencer;David N. McMurray;Maria Laura Gennaro - 通讯作者:
Maria Laura Gennaro
Immunological Characterization of Novel Secreted Antigens of Mycobacterium tuberculosis
结核分枝杆菌新型分泌抗原的免疫学特征
- DOI:
10.1111/j.0300-9475.2005.01557.x - 发表时间:
2005-02-01 - 期刊:
- 影响因子:3.7
- 作者:
Y. B. Amor;E. Shashkina;Sadie Johnson;P. Bifani;N. Kurepina;B. N. Kreiswirth;S. Bhattacharya;John S. Spencer;Adrian Rendon;A. Catanzaro;Maria Laura Gennaro - 通讯作者:
Maria Laura Gennaro
Accuracy and utility of commercially available amplification and serologic tests for the diagnosis of minimal pulmonary tuberculosis.
市售扩增和血清学检测用于诊断轻微肺结核的准确性和实用性。
- DOI:
10.1164/ajrccm.162.4.9912115 - 发表时间:
2000-10-01 - 期刊:
- 影响因子:24.7
- 作者:
K. Zahrani;H. Jahdali;L. Poirier;P. René;Maria Laura Gennaro;Dick Menzies - 通讯作者:
Dick Menzies
Maria Laura Gennaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Laura Gennaro', 18)}}的其他基金
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10273971 - 财政年份:2021
- 资助金额:
$ 152.48万 - 项目类别:
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10320995 - 财政年份:2021
- 资助金额:
$ 152.48万 - 项目类别:
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10847827 - 财政年份:2021
- 资助金额:
$ 152.48万 - 项目类别:
Sex hormones and innate immunity in tuberculosis
结核病中的性激素和先天免疫
- 批准号:
10186699 - 财政年份:2020
- 资助金额:
$ 152.48万 - 项目类别:
Effects of donor plasma and recipient characteristics on convalescent plasma treatment outcome of COVID-19
供体血浆和受体特征对 COVID-19 恢复期血浆治疗结果的影响
- 批准号:
10225219 - 财政年份:2019
- 资助金额:
$ 152.48万 - 项目类别:
Biomarkers for tuberculosis: new questions, new tools
结核病生物标志物:新问题,新工具
- 批准号:
8529930 - 财政年份:2013
- 资助金额:
$ 152.48万 - 项目类别:
FISH-Flow platform for host-based tuberculosis diagnostics
用于基于宿主的结核病诊断的 FISH-Flow 平台
- 批准号:
8895750 - 财政年份:2013
- 资助金额:
$ 152.48万 - 项目类别:
FISH-Flow platform for host-based tuberculosis diagnostics
用于基于宿主的结核病诊断的 FISH-Flow 平台
- 批准号:
8721843 - 财政年份:2013
- 资助金额:
$ 152.48万 - 项目类别:
相似国自然基金
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胆碱能抗炎通路调节巨噬细胞M1/M2极化在CVB3诱导的急性病毒性心肌炎中的作用及机制研究
- 批准号:81870281
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
急性病毒感染中转录因子Tbet对TFH应答的调控及机制研究
- 批准号:31700774
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
调控巨噬细胞极化的microRNA分子鉴定及其在CVB3诱导的急性病毒性心肌炎中的作用
- 批准号:81472017
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
新发急性病毒性传染病免疫预防的实验研究
- 批准号:30471544
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the immunology of autoantibody formation and function in COVID-19
阐明 COVID-19 中自身抗体形成和功能的免疫学
- 批准号:
10639707 - 财政年份:2023
- 资助金额:
$ 152.48万 - 项目类别:
Pandemic preparedness for underserved persons in the US: Harnessing data from the RADx-UP consortium to assess public health tools for resource allocation
美国服务不足人群的流行病防范:利用 RADx-UP 联盟的数据评估用于资源分配的公共卫生工具
- 批准号:
10881319 - 财政年份:2023
- 资助金额:
$ 152.48万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 152.48万 - 项目类别:
Mechanisms of SARS-CoV-2 pathogenesis during HIV/SIV infection
HIV/SIV 感染期间 SARS-CoV-2 的发病机制
- 批准号:
10685195 - 财政年份:2023
- 资助金额:
$ 152.48万 - 项目类别:
Determinants of Early Childhood Immune Responses to SARS-CoV-2 Vaccination
幼儿期 SARS-CoV-2 疫苗免疫反应的决定因素
- 批准号:
10715485 - 财政年份:2023
- 资助金额:
$ 152.48万 - 项目类别: