Brain-based and clinical phenotyping of pain pharmacotherapy in knee OA
膝关节 OA 疼痛药物治疗的脑基和临床表型
基本信息
- 批准号:10735060
- 负责人:
- 金额:$ 72.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AftercareAgeAnatomyAnxietyAttentionBackBehavioralBiochemicalBiological MarkersBlindedBrainBrain imagingC-reactive proteinCaringCharacteristicsClinicClinicalClinical DataClinical TrialsCollectionDataDegenerative polyarthritisDevelopmentDiseaseEmotionalEtiologyExposure toFormulationFunding OpportunitiesFutureGoalsImageIndividualInflammationInterventionJointsKneeKnee OsteoarthritisMagnetic Resonance ImagingMeasuresMental DepressionModalityModelingNaproxenNociceptionNon-Steroidal Anti-Inflammatory AgentsNorepinephrinePainPain intensityParentsParticipantPathway interactionsPatient Outcomes AssessmentsPatient SelectionPatient riskPatientsPeripheralPersonalityPersonsPharmaceutical PreparationsPharmacotherapyPhenotypePhysiologicalPlacebo EffectPlacebosPrognostic FactorPrognostic MarkerPropertyProspective StudiesPsychological FactorsPsychometricsQuestionnairesRandomizedRandomized, Controlled TrialsResearch Project GrantsRiskSensorySerotoninSerumSiteSpecificitySpinal CordTestingTherapeuticTherapeutic AgentsTherapeutic InterventionValidationWorkarmbrain basedbrain circuitrycentral sensitizationchronic painclinical biomarkersclinical outcome measuresclinical phenotypeconditioningcost effectivedaily paindemographicsdesignduloxetineemotional functioningepidemiology studyimprovedindexingindividual patientindividual variationinhibitorinnovationmachine learning predictionneurosensorynovel therapeuticsopioid useosteoarthritis painpain perceptionpain reliefpatient orientedpatient responsepatient variabilitypersonalized medicinepharmacologicpredictive modelingprognosticprognosticationprospectivepsychologicradiological imagingrandomized trialresearch clinical testingresponseresponse biomarkerreuptakesexside effectspecific biomarkerssuccesstreatment response
项目摘要
ABSTRACT
This proposal is in response to the funding opportunity Research Project Grant (Parent R01 Clinical Trial
Required), FOA number PAR-20-183. This proposal aims to identify specific biomarkers in individual people
with osteoarthritis (OA) pain that will allow definition of responder phenotypes distinct for different therapeutic
interventions. A mechanistic, prospective randomized trial will be undertaken, treating people having moderate
to severe OA pain with either naproxen (a non-steroidal anti-inflammatory agent (NSAID)), duloxetine (a selective
serotonin-norepinephrine reuptake inhibitor) or placebo in a 1:1:1 ratio. Randomization will be stratified by sex
and prior opioid use. Naproxen, duloxetine and placebo are known to have different mechanisms of action and
work at different sites in the pain pathway. Hence, it would be expected that these distinctions would be reflected
in differences in individuals who would respond to each of these interventions. To this end, during the study we
will collect a wide variety of biomarkers including demographics (sex, age), clinical outcome measures,
questionnaires of patient-reported outcomes, neurosensory status (quantitative sensory testing indices), serum-
based biomarkers, and joint and brain imaging. The treatment for each participant and collection of biomarkers
will occur during an initial 6-week period and then be repeated after a 4-week washout to account for the known
within-patient variability. The results obtained will permit the identification of responders (defined by 30% or
greater improvement in pain from baseline with other thresholds also evaluated), and the correlation of biomarker
status at baseline to response. We will then build a model to define the responder phenotype for each
intervention, first using only clinical data and secondly using both clinical and MRI-based brain data. The latter
will permit a further understanding of the mechanisms involved in modulation of the pain pathways by each of
the agents. Particular attention will be given to treatment by sex interactions. The characterization of responder
phenotypes to NSAID, duloxetine and placebo will allow for the practice of personalized medicine, providing the
right drug to the right patient, enhancing therapeutic success, and reducing the risks involved with being treated
with ineffective drugs having serious potential side effects. In addition, this approach will allow for more targeted
and more efficient development of potential new therapeutic agents to treat OA pain.
抽象的
该提案是为了响应资助机会研究项目补助金(母公司 R01 临床试验)
必需),FOA 编号 PAR-20-183。该提案旨在识别个体中的特定生物标志物
骨关节炎 (OA) 疼痛,这将允许定义不同治疗方法的不同反应者表型
干预措施。将进行一项机制性、前瞻性随机试验,治疗患有中度疾病的人
使用萘普生(一种非甾体抗炎药 (NSAID))、度洛西汀(一种选择性
血清素-去甲肾上腺素再摄取抑制剂)或安慰剂,比例为 1:1:1。随机分组将按性别分层
以及之前使用阿片类药物。已知萘普生、度洛西汀和安慰剂具有不同的作用机制,并且
在疼痛通路的不同部位发挥作用。因此,预计这些区别将得到反映
对每种干预措施做出反应的个人存在差异。为此,我们在研究过程中
将收集各种生物标志物,包括人口统计数据(性别、年龄)、临床结果指标、
患者报告的结果、神经感觉状态(定量感觉测试指数)、血清
基于生物标志物以及关节和大脑成像。每个参与者的治疗和生物标志物的收集
将在最初的 6 周期间发生,然后在 4 周的清洗后重复以考虑已知的情况
患者内部的变异性。获得的结果将允许识别响应者(定义为 30% 或
疼痛较基线有更大改善,还评估了其他阈值),以及生物标志物的相关性
响应基线状态。然后我们将建立一个模型来定义每个的响应者表型
干预,首先仅使用临床数据,其次使用临床和基于 MRI 的大脑数据。后者
将有助于进一步了解每种疼痛途径调节所涉及的机制
代理商。将特别关注通过性互动进行的治疗。响应者的特征
NSAID、度洛西汀和安慰剂的表型将允许个体化医疗的实践,提供
对正确的患者使用正确的药物,提高治疗成功率,并降低治疗风险
无效药物具有严重的潜在副作用。此外,这种方法将允许更有针对性的
以及更有效地开发治疗骨关节炎疼痛的潜在新治疗药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Apkar Vania Apkarian其他文献
Apkar Vania Apkarian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Apkar Vania Apkarian', 18)}}的其他基金
Brain reorganization in chronic back pain and opioid exposure
慢性背痛和阿片类药物暴露的大脑重组
- 批准号:
10440294 - 财政年份:2018
- 资助金额:
$ 72.37万 - 项目类别:
Brain reorganization in chronic back pain and opioid exposure
慢性背痛和阿片类药物暴露的大脑重组
- 批准号:
10198885 - 财政年份:2018
- 资助金额:
$ 72.37万 - 项目类别:
相似国自然基金
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GNAS介导OPN4-PLCβ4-TRPC6/7通路调节自主感光视网膜神经节细胞在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Assessment of ultrasound-facilitated neurotherapeutics in Alzheimer's disease
超声辅助神经疗法治疗阿尔茨海默病的评估
- 批准号:
10901036 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
A novel non-transgenic fly model for tauopathies
一种新型非转基因 tau蛋白病果蝇模型
- 批准号:
10662019 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Machine Learning and Radiomics Techniques for Analysis of Daily MRI in Glioblastoma Patients
用于分析胶质母细胞瘤患者日常 MRI 的机器学习和放射组学技术
- 批准号:
10751672 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Characterizing the spatial distribution of color vision deficiencies in diabetes and prediabetes
描述糖尿病和糖尿病前期色觉缺陷的空间分布特征
- 批准号:
10667262 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别:
Early prevention interventions towards ART-free pediatric HIV remission
早期预防干预措施以实现免抗逆转录病毒疗法儿童艾滋病毒缓解
- 批准号:
10700531 - 财政年份:2023
- 资助金额:
$ 72.37万 - 项目类别: