Absolute Quantification of Molecular Representation and Interaction

分子表示和相互作用的绝对定量

基本信息

项目摘要

Explanation We have adapted the methods for absolute quantification based on the targeted proteomics combined with the use of peptide standards and used the data for robust predictive modeling of the signaling pathways in the immune system. We used sphingosine-1-phosphate-mediated macriphage chemotaxis as an initial model system. S1P regulates the chemoattraction and chemorepulsion of osteoclast precursors to and from bones. The murine macrophage RAW 264.7 cells, used here as a model, express two receptors for S1P: S1PR1 and S1PR2. These receptors have markedly different affinity to S1P and cause the opposite effects upon exposure to low/high concentrations of S1P. To develop a deeper understanding of mammalian cell chemotaxis, we used transcriptomics, shotgun proteomics, targeted proteomics, and pathway simulation to investigate S1P-mediated chemotaxis of osteoclast precursors. Transcriptomics using RNA-seq enabled the identification and quantitation of RNA transcripts and shotgun proteomics enabled the identification of proteotypic peptides selected based on peptide proteotypic qualities, sequence uniqueness, and vulnerability to modification (e.g., oxidation and deamidation), eliminating many theoretically possible peptides, which could be non-compatible with mass spectrometric analysis. We used the quantitative data obtained from osteoclast precursors by shotgun proteomics to find the peptides amenable to analysis in our mass spectrometers. SPOT synthesis was used to prepare a set of 409 standard, synthetic peptides, which we used to assess the protein expressions in macrophages. Single Reaction Monitoring (SRM) of RAW264.7 cell lysates spiked with the standard peptides resulted in the confident identification and semi-quantitation of 208 of the 409 peptide targets from proteins in the chemokine signaling network. The SRM analysis of a smaller set of 65 heavy-labeled, quantitated internal peptide standards from proteins differentially expressed under different experimental conditions provided absolute numbers of molecules. These data were then used to design targeted proteomics assays of the proteins of the mouse chemotaxis pathway. Targeted proteomics assays using nano-flow liquid chromatography coupled to selected reaction monitoring mass spectrometry (LC-SRM) were performed to produce absolute abundance values (in units of copies/cell) for each of the target proteins within RAW 264.7 cells. RAW cells were again used as model osteoclast precursors because they have very similar S1P-directed chemotaxis behavior. Rules-based pathway modeling enabled the simulation of the mouse chemotaxis pathway based on bi-molecular interactions within the geometry of a three-dimensional in silico RAW cell. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses towards stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrated the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight and defined our experimental approach to modeling other immune system signaling pathways (1, 2, 3). In the TLR signaling network modeling study, we utilize targeted proteomics with transcriptomics to aid in contructing a computational model of the LPS-TLR4 signaling pathway in a mouse monocyte-macrophage cell line RAW264.7. A set of protein targets was identified from a review of current literature and KEGG pathways describing LPS-TLR4 signaling. Corresponding peptides were selected after scoring based on several criteria including length, shotgun proteomics identification, and potential PTM sites as determined by literature mining by motif prediction (Pubmed). Peptides were analyzed in both shotgun-mode and SRM-mode to determine the potential for success in biological samples. RAW cell samples stimulated with LPS for different times were analyzed for the selected peptides. We performed semi-quantitative analysis with the external peptide standards and obtained proteotypic peptides for most of the proteins in the canonical TLR signaling network. Based on these results, we have obtained and heavy-labeled internal peptide standards against corresponding protein targets for absolute quantitation measurements. Additionally, we designed, obtained and tested a set of peptides phosphorylated at the crucial regulatory residues of the proteins in the TLR signaling network. We have performed robust quantitative measurements with the heavy-labeled peptide standards spiked into the cell lysates. Using SRM and PRM (Parallel Reaction Monitoring) we examined unstimulated controls and cells stimulated with LPS for 30 minutes. We obtained absolute protein measurements and phosphosite occupancy measurements for both and made the comprehensive datasets publicly available (4). We have created the network of essential proteins and their interactions in the innate immune signaling (5) for the Simmune-based model and began modeling the network changes following TLR stimulation with LPS. The model we are building in collaboration with Dr. Meier-Schellersheim and the Computational Biology Section incorporates also the measurements of PTM changes obtained from project AI001084-11 and the binding constants we are getting using the modeling with protein structure data. We have begun to look at proteome changes at the single cell level using the combination of a single-cell proteomics methodology recently developed by Slavov and Budnik (SCoPE-MS). In this project, we can reach beyond basal level quantification to further develop and test the TLR signaling network model under a variety of biologically relevant perturbations (different and modified TLR ligands, whole pathogens, and cells with mutations in specific signaling molecules). 1. Manes NP, et al. (2015) Mol Cell Proteomics. 2015 Oct;14(10):2661-81. doi: 10.1074/mcp.M115.048918. 2. Manes NP, Mann JM, and Nita-Lazar A. (2015) J Vis Exp 102, doi: 10.3791/529 3. Manes NP, Nita-Lazar A (2018) J Proteomics. 2018 Oct 30;189:75-90. doi: 10.1016/j.jprot.2018.02. 4. Manes NP et al. (2022) Sci Data. 2022 Aug 12;9(1):491. 5. Manes NP, Nita-Lazar A (2021) mSystems, Jun 29;6(3):e0033621.
解释 我们根据目标蛋白质组学并结合肽标准品的使用,调整了绝对定量方法,并使用这些数据对免疫系统中的信号通路进行稳健的预测建模。 我们使用 1-磷酸鞘氨醇介导的巨噬细胞趋化作用作为初始模型系统。 S1P 调节破骨细胞前体进出骨骼的化学吸引和化学排斥。此处用作模型的鼠巨噬细胞 RAW 264.7 细胞表达两种 S1P 受体:S1PR1 和 S1PR2。这些受体对 S1P 的亲和力明显不同,并且在暴露于低/高浓度的 S1P 时会产生相反的效果。为了更深入地了解哺乳动物细胞趋化性,我们使用转录组学、鸟枪蛋白质组学、靶向蛋白质组学和途径模拟来研究 S1P 介导的破骨细胞前体趋化性。使用 RNA-seq 的转录组学能够识别和定量 RNA 转录本,而鸟枪法蛋白质组学能够识别基于肽蛋白型质量、序列独特性和修饰脆弱性(例如氧化和脱酰胺)而选择的蛋白型肽,消除了许多理论上可能的肽,这可能与质谱分析不兼容。我们使用通过鸟枪蛋白质组学从破骨细胞前体获得的定量数据来寻找适合在我们的质谱仪中分析的肽。 SPOT 合成用于制备一组 409 个标准合成肽,我们用它们来评估巨噬细胞中的蛋白质表达。对掺有标准肽的 RAW264.7 细胞裂解物进行单反应监测 (SRM),可对趋化因子信号网络中蛋白质的 409 个肽靶点中的 208 个进行可靠的鉴定和半定量。对来自不同实验条件下差异表达的蛋白质的较小组 65 个重标记定量内肽标准品进行 SRM 分析,提供了分子的绝对数量。然后将这些数据用于设计小鼠趋化途径蛋白质的靶向蛋白质组学测定。 使用纳流液相色谱结合选择反应监测质谱 (LC-SRM) 进行靶向蛋白质组学测定,以产生 RAW 264.7 细胞内每种靶蛋白的绝对丰度值(以拷贝/细胞为单位)。 RAW 细胞再次被用作破骨细胞前体模型,因为它们具有非常相似的 S1P 定向趋化行为。基于规则的通路建模能够基于三维计算机原始细胞几何结构内的双分子相互作用模拟小鼠趋化通路。测量的蛋白质丰度值用作模拟输入参数,导致计算机模拟途径行为与体外测量结果相匹配。此外,一旦建立了模型参数,即使对未用于参数化的刺激的模拟反应也与实验结果一致。这些发现证明了将靶向质谱与通路建模相结合以推进生物学洞察的可行性和价值,并定义了我们模拟其他免疫系统信号通路的实验方法 (1,2,3)。 在 TLR 信号网络建模研究中,我们利用靶向蛋白质组学和转录组学来帮助构建小鼠单核巨噬细胞系 RAW264.7 中 LPS-TLR4 信号通路的计算模型。通过对当前文献和描述 LPS-TLR4 信号传导的 KEGG 通路的回顾,确定了一组蛋白质靶标。根据几个标准评分后选择相应的肽,这些标准包括长度、鸟枪法蛋白质组学鉴定以及通过基序预测(Pubmed)进行文献挖掘确定的潜在 PTM 位点。在鸟枪模式和 SRM 模式下对肽进行分析,以确定在生物样品中成功的潜力。分析用 LPS 刺激不同时间的原始细胞样品中选定的肽。我们使用外部肽标准品进行了半定量分析,并获得了规范 TLR 信号网络中大多数蛋白质的蛋白肽。基于这些结果,我们获得了针对相应蛋白质靶标的重标记内肽标准品,以进行绝对定量测量。此外,我们设计、获得并测试了一组在 TLR 信号网络中蛋白质的关键调节残基处磷酸化的肽。我们使用添加到细胞裂解物中的重标记肽标准品进行了可靠的定量测量。使用 SRM 和 PRM(平行反应监测),我们检查了未刺激的对照和用 LPS 刺激 30 分钟的细胞。我们获得了两者的绝对蛋白质测量值和磷酸位点占据测量值,并公开了综合数据集 (4)。我们为基于 Simmune 的模型创建了必需蛋白网络及其在先天免疫信号传导中的相互作用 (5),并开始对用 LPS 刺激 TLR 后的网络变化进行建模。我们与 Meier-Schellersheim 博士和计算生物学部分合作构建的模型还包含从项目 AI001084-11 获得的 PTM 变化的测量值以及我们使用蛋白质结构数据建模获得的结合常数。我们已经开始结合 Slavov 和 Budnik 最近开发的单细胞蛋白质组学方法 (SCoPE-MS) 来研究单细胞水平的蛋白质组变化。在这个项目中,我们可以超越基础水平定量,进一步开发和测试各种生物学相关扰动(不同和修饰的 TLR 配体、整个病原体和特定信号分子突变的细胞)下的 TLR 信号网络模型。 1.Manes NP 等人。 (2015)摩尔细胞蛋白质组学。 2015 年 10 月;14(10):2661-81。 doi:10.1074/mcp.M115.048918。 2.Manes NP、Mann JM 和 Nita-Lazar A. (2015) J Vis Exp 102,doi:10.3791/529 3.Manes NP,Nita-Lazar A (2018) J 蛋白质组学。 2018 年 10 月 30 日;189:75-90。 doi:10.1016/j.jprot.2018.02。 4.Manes NP 等人。 (2022)科学数据。 2022 年 8 月 12 日;9(1):491。 5.Manes NP,Nita-Lazar A (2021) mSystems,6 月 29 日;6(3):e0033621。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandra Nita-Lazar其他文献

Aleksandra Nita-Lazar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandra Nita-Lazar', 18)}}的其他基金

COVID-19 biomarker discovery
COVID-19 生物标志物的发现
  • 批准号:
    10272260
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    9161645
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    8555993
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    10014163
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    10927838
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Absolute Quantification of Molecular Representation and Interaction
分子表示和相互作用的绝对定量
  • 批准号:
    10272156
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    10272155
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Absolute Quantification of Molecular Representation and Interaction
分子表示和相互作用的绝对定量
  • 批准号:
    8946468
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Absolute Quantification of Molecular Representation and Interaction
分子表示和相互作用的绝对定量
  • 批准号:
    7964731
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:
Protein Modifications Involved in Cell Signaling
参与细胞信号转导的蛋白质修饰
  • 批准号:
    9354861
  • 财政年份:
  • 资助金额:
    $ 80.12万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
  • 批准号:
    62371403
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
  • 批准号:
    10596786
  • 财政年份:
    2023
  • 资助金额:
    $ 80.12万
  • 项目类别:
Alterations in Microglial function moderate the development of maladaptive drinking behaviors following early life stress and are exacerbated by ethanol consumption
小胶质细胞功能的改变会减缓早期生活压力后不良饮酒行为的发展,并因乙醇消耗而加剧
  • 批准号:
    10680078
  • 财政年份:
    2023
  • 资助金额:
    $ 80.12万
  • 项目类别:
Brain Wide Anesthetic-Active Neuronal Network
全脑麻醉活性神经元网络
  • 批准号:
    10712033
  • 财政年份:
    2023
  • 资助金额:
    $ 80.12万
  • 项目类别:
Regulation of alcohol-induced social disturbances by lateral habenula serotonin receptors
外侧缰核血清素受体调节酒精引起的社交障碍
  • 批准号:
    10664291
  • 财政年份:
    2023
  • 资助金额:
    $ 80.12万
  • 项目类别:
Understanding the predeterminants of transcription factor regulatory activity
了解转录因子调节活性的决定因素
  • 批准号:
    10798541
  • 财政年份:
    2022
  • 资助金额:
    $ 80.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了