Establishing a spatial map of dopamine reward prediction error computations and their function in distinct associative learning processes across the striatum: a methodological framework
建立多巴胺奖励预测误差计算的空间图及其在纹状体不同联想学习过程中的功能:方法框架
基本信息
- 批准号:10725129
- 负责人:
- 金额:$ 3.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAnatomyAnimalsAreaAssociation LearningBasal GangliaBehaviorBehavioralBehavioral ModelBehavioral ParadigmBostonBrain regionCharacteristicsChoice BehaviorChronicClassificationComplexCorpus striatum structureCuesDevelopmentDevicesDiagnosticDiseaseDopamineEducational process of instructingEtiologyFiberFiber OpticsFosteringFunctional disorderFutureGoalsHeterogeneityImpairmentInvestigationLearningLightLocationMapsMental disordersMentorshipMethodologyMethodsModelingMusNeurosciencesObsessive-Compulsive DisorderOperant ConditioningOpticsOutcomeParkinson DiseasePatternPhotometryProcessRecording of previous eventsResearchResolutionResponse to stimulus physiologyRewardsSchizophreniaShapesSignal TransductionSiteStimulusSymptomsTechniquesTestingTraineeshipTrainingTraining SupportUniversitiesUpdateVariantaddictionbehavior testcell typecollaborative environmentdesigndigitaldopaminergic neuroneffective therapyexperienceflexibilityimprovedin vivonervous system disorderneural circuitoptical fiberoptogeneticspostsynapticprogramsresponsesegregationspatiotemporaltechnology developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT. Dopamine (DA) signaling in the striatum, the main input to the basal
ganglia, is critical for instrumental learning, a process involving associations of stimuli, responses, and outcomes.
DA dysfunction results in diverse symptoms in disorders such as obsessive-compulsive disorder, Parkinson’s
Disease, and addiction, which are often attributed to an imbalance in distinct instrumental learning processes.
Anatomically segregated subregions of the striatum are thought to support stimulus-outcome (S-O), stimulus-
response (S-R), and response-outcome (R-O) associations. Further, while the dorsomedial striatum (DMS) is
necessary for flexible goal-directed behavior, the dorsolateral striatum (DLS) supports automatic, outcome-
independent habitual behavior. While dopamine (DA) is typically thought to encode a reward prediction error
(RPE), a teaching signal which drives associative learning, studies suggest that DA release dynamics vary
depending on the target region. However, it is unknown how natural spatiotemporal DA release dynamics support
learning distinct stimulus, response, and outcome associations. These gaps hinder the development of targeted
diagnostics and treatments for dopamine-dysfunction affecting distinct striatum regions.
This proposed project will make strides toward understanding the functional and computational
significance of spatially varying DA dynamics in distinct associative learning processes. A behavioral paradigm
which requires mice to switch from a cue-dependent S-R strategy to a cue-independent strategy based on recent
actions and outcomes will enable classification of behavior strategy across timescales. This behavioral paradigm
will be combined with a new multi optical fiber photometry method to record DA release dynamics throughout
the volume of the striatum as mice learn and update distinct stimulus, response and outcome contingencies.
This new large-scale, cell-type specific recording method will be applied to establish a spatial map of distinct DA
RPE correlates and can be adapted to record distributed cell-type specific dynamics of any brain region with
high spatiotemporal resolution. Finally, this method will be advanced with a digital mirror device (DMD) to target
light to large, yet spatially precise, regions of the striatum for optogenetic manipulation which mimics the spatial
scale and resolution of natural DA release dynamics.
Completion of this project will support practical and theoretical training in three main areas: behavioral
testing and analysis, functional circuit analysis, and technology development. Dr. Mark Howe (sponsor) will
provide mentorship and training in in vivo analysis of neural circuits and dynamics. Dr. David Boas (co-sponsor),
the director of the Neurophotonics Center at Boston University, will provide training in the concepts and
techniques used for optical neuro-engineering, which will augment training supported by the NSF
Neurophotonics National Research Traineeship Program. The Graduate Program for Neuroscience (GPN) at
Boston University will provide additional training while fostering a collaborative and interdisciplinary environment.
项目摘要/摘要:纹状体中的多巴胺 (DA) 信号传导,是基底层的主要输入。
神经节对于工具性学习至关重要,工具性学习是一个涉及刺激、反应和结果关联的过程。
DA 功能障碍会导致多种疾病症状,例如强迫症、帕金森症
疾病和成瘾通常归因于不同工具学习过程的不平衡。
纹状体在解剖学上分离的子区域被认为支持刺激结果(S-O)、刺激-结果
此外,背内侧纹状体(DMS)是反应(S-R)和反应结果(R-O)关联。
背外侧纹状体(DLS)是灵活的目标导向行为所必需的,它支持自动的、结果的
而多巴胺(DA)通常被认为编码了奖励预测错误。
(RPE),一种驱动联想学习的教学信号,研究表明 DA 释放动态各不相同
然而,自然时空 DA 释放动态如何支持尚不清楚。
学习刺激、反应和结果的关联性这些差距阻碍了有针对性的发展。
影响不同纹状体区域的多巴胺功能障碍的诊断和治疗。
这个拟议的项目将在理解功能和计算方面取得重大进展
空间变化的 DA 动态在不同的联想学习过程中的重要性。
这要求小鼠从依赖线索的 S-R 策略切换到基于最近的线索独立策略
行动和结果将使跨时间尺度的行为策略分类成为可能。
将与新的多光纤光度测量方法相结合,全程记录 DA 释放动态
当小鼠学习和更新不同的刺激、反应和意外结果时,纹状体的体积。
这种新的大规模、细胞类型特异性记录方法将用于建立不同 DA 的空间图
RPE 关联并可用于记录任何大脑区域的分布式细胞类型特定动态
最后,该方法将通过数字镜装置(DMD)来实现目标。
光照射到纹状体的大区域,但在空间上是精确的,以进行光遗传学操作,模拟空间
自然 DA 释放动态的规模和分辨率。
该项目的完成将支持三个主要领域的实践和理论培训:行为
测试和分析、功能电路分析以及技术开发。
提供神经回路和动力学体内分析的指导和培训。 David Boas 博士(共同发起人),
波士顿大学神经光子学中心主任将提供概念和技术方面的培训
用于光学神经工程的技术,这将增强 NSF 支持的培训
神经光子学国家研究实习计划。神经科学研究生计划 (GPN)
波士顿大学将提供额外的培训,同时营造协作和跨学科的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eleanor Brown其他文献
Eleanor Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eleanor Brown', 18)}}的其他基金
Establishing a spatial map of dopamine reward prediction error computations and their function in distinct associative learning processes across the striatum: a methodological framework
建立多巴胺奖励预测误差计算的空间图及其在纹状体不同联想学习过程中的功能:方法框架
- 批准号:
10537425 - 财政年份:2022
- 资助金额:
$ 3.17万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 3.17万 - 项目类别: