Defining Nuclear H2O2 Regulation by Covalent Regulators
通过共价调节剂定义核 H2O2 调节
基本信息
- 批准号:10725269
- 负责人:
- 金额:$ 45.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcrylamidesAgingBiologicalBiological AgingBiological AssayBiological ProcessBiologyCaenorhabditis elegansCell AgingCell LineCell NucleusCellsChemical AgentsChemicalsCysteineCytosolDNA DamageDataDetectionDevelopmentDiseaseDrug Metabolic DetoxicationEquilibriumFibroblastsGeneticGenetic ModelsGenomic InstabilityGoalsGolgi ApparatusHomeostasisHydrogen PeroxideInvestmentsKnowledgeLibrariesLinkLongevityMaintenanceMalignant NeoplasmsMeasuresMetabolicMetabolic DiseasesMethodsMitochondriaNeurodegenerative DisordersNuclearNucleic AcidsOrganellesOxidation-ReductionOxidative StressPathway interactionsPhenotypePlayPopulationProcessProtein OverexpressionProteinsProteomicsReactive Oxygen SpeciesRegulationReporterResearchResolutionRoleSensitivity and SpecificitySeriesShapesSignal TransductionSpecificityTechnologyTestingchemoproteomicschemotherapycomplex biological systemsgenome integrityin vivoinhibitorinnovationkinase inhibitorloss of functionmouse modelnext generationpharmacologicprotein functionscreeningsenescencesensorsmall moleculesmall molecule librariessuccesstargeted treatmenttool
项目摘要
Project Summary
Loss of metabolic homeostasis is through to contribute to aging and replicative senescence. Control of redox
balance is critical for maintenance of metabolic homeostasis. Improper levels of reactive oxygen species (ROS)
are thought to be an important contributor to multiple aging related diseases such as metabolic diseases, cancer
and neurodegenerative disorders. At high levels, ROS modify nucleic acids–an important mechanism by which
this group of reactive metabolites leads to genomic instability and replicative senescence. While there has been
much investment into understanding how different ROS damage nucleic acids, surprisingly little is known about
the pathways which generate, detoxify and sense nuclear ROS. This knowledge-gap hampers our understanding
of the roles nuclear ROS plays during biological aging. A major obstacle to deciphering the biology of nuclear
ROS is the inability to control the levels of ROS in a nucleus-specific manner, through defined mechanisms of
action. Small molecules have been instrumental in biological breakthroughs often regulating biological processes
at a level of specificity and precision not achievable with even the most advanced genetic models. The purpose
of this application is to develop a suite of chemical probes that specifically increase nuclear ROS levels and
characterize their corresponding protein targets. We will do so, by combining a nuclear-localized H2O2 sensor
(HyPer7) with a chemical proteomic-guide small molecule screen. We have previously used these approaches
to identify a small inhibitor that increases C elegans longevity by ~45% and characterized its target protein,
providing support for the great utility of chemoproteomic screening approaches to study biological aging. Here,
we will leverage a cysteine-focused small molecule library (5000+ chemically diverse
chloroacetamide/acrylamides) to identify covalent probes that increase steady state nuclear H2O2 levels. We
focus on cysteines given their critical role in protein function and the ability to identify covalent inhibitors that
engage them using chemoproteomics. A preliminary screen of 270+ molecules has already furnished 9
compounds that specifically increase nuclear H2O2 levels but not at other compartments. We will subsequently
use chemical proteomics to identify the corresponding protein target and determine their importance in regulating
nuclear H2O2 levels and replicative senescence. The research proposed herein, takes full advantage of a series
of recently developed methods: genetically encoded ROS reporters and chemical proteomics, which have
previously been used in isolation, to be integrated into an effective approach to identify the pathways that control
nuclear H2O2 levels. These studies will provide both a deeper understanding of the key pathways involved in
nuclear ROS regulation and develop a much-needed suite of pharmacological agents to study how ROS in
different compartments shapes biological aging.
项目概要
代谢稳态的丧失会导致衰老和复制衰老。
平衡对于维持代谢稳态至关重要。活性氧 (ROS) 水平不当。
被认为是代谢性疾病、癌症等多种衰老相关疾病的重要促成因素
在高水平下,ROS 会修饰核酸——这是一种重要的机制。
这组反应性代谢物会导致基因组不稳定和复制衰老。
人们投入了大量精力来了解不同的活性氧如何损伤核酸,但令人惊讶的是,人们对此知之甚少
这种知识差距阻碍了我们对核活性氧的产生、解毒和感知的途径。
核活性氧在生物衰老过程中的作用是破译核生物学的主要障碍。
ROS 是指无法通过确定的机制以细胞核特异性方式控制 ROS 水平。
小分子在生物学突破中发挥了重要作用,通常调节生物过程。
即使是最先进的遗传模型也无法达到这样的特异性和精确度。
该应用的目的是开发一套化学探针,专门提高核活性氧水平和
我们将通过结合核定位的 H2O2 传感器来表征它们相应的蛋白质目标。
(HyPer7)与化学蛋白质组指导小分子筛选我们之前使用过这些方法。
鉴定一种可将线虫寿命延长约 45% 的小型抑制剂,并表征其目标蛋白,
为化学蛋白质组筛选方法在研究生物衰老方面的巨大效用提供了支持。
我们将利用以半胱氨酸为中心的小分子库(5000+化学多样性
氯乙酰胺/丙烯酰胺)来鉴定可增加稳态核 H2O2 水平的共价探针。
鉴于半胱氨酸在蛋白质功能中的关键作用以及识别共价抑制剂的能力,因此重点关注半胱氨酸
使用化学蛋白质组学对他们进行初步筛选,已提供 9 个分子。
我们随后会专门增加核 H2O2 水平但不会增加其他区室的化合物。
使用化学蛋白质组学来识别相应的蛋白质靶标并确定其在调节中的重要性
核H2O2水平和复制衰老本文提出的研究充分利用了一系列的优势。
最近开发的方法:基因编码的 ROS 生产者和化学蛋白质组学,这些方法已
以前是单独使用的,现在要整合到一种有效的方法中,以确定控制的途径
这些研究将提供对参与的关键途径的更深入的了解。
核 ROS 调节并开发一套急需的药物制剂来研究 ROS 如何在
不同的区室塑造生物衰老。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liron Bar-Peled其他文献
Liron Bar-Peled的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liron Bar-Peled', 18)}}的其他基金
Deciphering the Role of Reductive Stress in Non Small Cell Lung Cancer
解读还原应激在非小细胞肺癌中的作用
- 批准号:
10365388 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Chemical Proteomic Identification of Druggable Oncogenic Transcription Factors
可药物致癌转录因子的化学蛋白质组学鉴定
- 批准号:
10357900 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Deciphering the Role of Reductive Stress in Non Small Cell Lung Cancer
解读还原应激在非小细胞肺癌中的作用
- 批准号:
10540372 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Chemical Proteomic Identification of Druggable Oncogenic Transcription Factors
可药物致癌转录因子的化学蛋白质组学鉴定
- 批准号:
10113070 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Chemical Proteomic Identification of Druggable Oncogenic Transcription Factors
可药物致癌转录因子的化学蛋白质组学鉴定
- 批准号:
10576274 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Mapping druggable co-dependency pathways in NRF2-driven lung cancers
绘制 NRF2 驱动的肺癌的药物共依赖性途径
- 批准号:
9891966 - 财政年份:2017
- 资助金额:
$ 45.89万 - 项目类别:
Mapping druggable co-dependency pathways in NRF2-driven lung cancers
绘制 NRF2 驱动的肺癌的药物共依赖性途径
- 批准号:
9294607 - 财政年份:2017
- 资助金额:
$ 45.89万 - 项目类别:
Mapping druggable co-dependency pathways in NRF2-driven lung cancers
绘制 NRF2 驱动的肺癌的药物共依赖性途径
- 批准号:
10115633 - 财政年份:2017
- 资助金额:
$ 45.89万 - 项目类别:
相似国自然基金
基于第一性原理的含酚类生物再生剂热裂解逆向调控与代替老化再生机理
- 批准号:52308445
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭介导下喀斯特耕地土壤微塑料老化及其对Cd有效性的影响机制
- 批准号:42367031
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于单颗粒荧光和质谱联用的生物气溶胶生成、演化和老化机制的研究
- 批准号:42305094
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
浅层水体条件下光老化微/纳塑料荧光性的产生及其在生物体内荧光示踪与降解机制的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
PIXEL-seq-based spatial, multi-omic profiling for senescent cell mapping with single-cell resolution
基于 PIXEL-seq 的空间多组学分析,用于具有单细胞分辨率的衰老细胞作图
- 批准号:
10494128 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
PIXEL-seq-based spatial, multi-omic profiling for senescent cell mapping with single-cell resolution
基于 PIXEL-seq 的空间多组学分析,用于具有单细胞分辨率的衰老细胞作图
- 批准号:
10375968 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
PIXEL-seq-based spatial, multi-omic profiling for senescent cell mapping with single-cell resolution
基于 PIXEL-seq 的空间多组学分析,用于具有单细胞分辨率的衰老细胞作图
- 批准号:
10907054 - 财政年份:2021
- 资助金额:
$ 45.89万 - 项目类别:
Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
- 批准号:
10668940 - 财政年份:2019
- 资助金额:
$ 45.89万 - 项目类别:
Hybrid Synthetic and Biologic Shear Thinning Hydrogels for Diabetic Wound Healing
用于糖尿病伤口愈合的混合合成和生物剪切稀化水凝胶
- 批准号:
10245000 - 财政年份:2019
- 资助金额:
$ 45.89万 - 项目类别: