Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
基本信息
- 批准号:10700120
- 负责人:
- 金额:$ 76.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-07 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptedBehaviorBehavioralCardiovascular PhysiologyCaringCellular PhoneClinicalClinical TrialsDataDisease remissionEffectivenessEmotionsEquipment and supply inventoriesFrequenciesGoalsHealth Services AccessibilityHealthcare SystemsIndividualInterventionKnowledgeLeadMachine LearningMeasuresMental DepressionMental HealthMental Health ServicesMethodsModelingMonitorOutcome AssessmentOutpatientsPathway interactionsPatientsPersonsPharmaceutical PreparationsPhysical activityPopulationPrecision therapeuticsPredictive FactorPsychotherapyPublic HealthQuality of lifeRecording of previous eventsRecoveryResearchSample SizeSamplingSignal TransductionSleepSpeedSurveysSymptomsTechnologyTimeTranslatingWaiting ListsWorkanalytical methodanalytical toolclinical practicedemographicsdensitydepressive symptomsdesigndigital interventiondisabilityevidence baseexperienceimprovedindividualized medicineineffective therapiesinnovationmobile computingnovelpatient responsepatient variabilitypersistent symptompredictive modelingprogramsrecruitsensorsocial engagementtreatment durationtreatment effecttreatment responsetreatment trialwearable devicewearable sensor technology
项目摘要
Abstract
Tailoring care to match patients to the treatment most effective for them has the potential to accelerate
recovery and meaningfully reduce the growing burden of depression. A key barrier to tailoring care is the
absence of objective, real-time methods to effectively predict and assess treatment response. Mobile
technology holds promise to overcome this barrier. Specifically, smartphones and wearable sensors collect
passive, continuous and objective measures of constructs central to depression, such as sleep, physical
activity, cardiovascular function, and social engagement. Studies have demonstrated associations of single
measures from these domains with depression. However, because most prior wearable studies have had
limited sample sizes, they have not been able to synthesize actionable information across multiple domains of
mobile technology data and effectively guide treatment. Our long-term goal is to substantially increase the
effectiveness of depression treatments and the capacity of our mental health care system. Our objective in this
application is to identify factors that can be used to effectively match patients to treatments and track their
recovery. Through the PROviding Mental health Precision Treatment (PROMPT) study, we will complete the
following specific aims: Aim 1) Identify factors that predict which treatment is most likely to reduce depression
symptoms for a specific patient; and Aim 2) Identify passive mobile technology-based measures that serve as
signals of treatment response. To achieve these aims, we will recruit 2,200 subjects from waitlist for outpatient
depression treatment. We will then track patients for six months through wearable sensors, smartphones, and
repeated surveys. For both aims, we will use machine learning approaches to develop comprehensive
prediction models. Our approach is innovative because it applies technology and analytic tools to a large and
diverse sample of subjects receiving treatment under real world conditions. Further, the project is designed to
lead directly to an organization-level intervention that matches patients to treatments and continuously
monitors their response to treatment. Finally, this project is significant because it has the potential to greatly
accelerate recovery by identifying the treatment from which each person is likely to derive the most benefit,
ultimately helping to address the high population burden of depression.
抽象的
调整护理使患者与对他们最有效的治疗相匹配,有可能加速
恢复并有意义减轻抑郁症的日益增长的负担。调整护理的关键障碍是
没有客观的实时方法可以有效预测和评估治疗反应。移动的
技术有望克服这一障碍。具体而言,智能手机和可穿戴传感器收集
被动,连续和客观的结构构造的抑郁症中心,例如睡眠,身体
活动,心血管功能和社交参与。研究表明了单一的关联
来自这些领域的措施。但是,因为大多数先前的可穿戴研究已经
样本量有限,他们无法综合跨多个域的可行信息
移动技术数据并有效指导治疗。我们的长期目标是实质上增加
抑郁症治疗的有效性和我们的心理保健系统的能力。我们的目标
应用是确定可用于有效与患者与治疗相匹配的因素并跟踪他们的
恢复。通过提供心理健康精确治疗(及时)研究,我们将完成
以下特定目的:目标1)确定预测哪种治疗方法最有可能减少抑郁症的因素
特定患者的症状;目标2)确定基于移动技术的措施
治疗反应的信号。为了实现这些目标,我们将从候补名单中招募2,200名受试者的受试者
抑郁症治疗。然后,我们将通过可穿戴传感器,智能手机和
重复调查。对于这两个目标,我们将使用机器学习方法来开发全面
预测模型。我们的方法具有创新性,因为它将技术和分析工具应用于大型且
在现实世界中接受治疗的受试者的不同样本。此外,该项目旨在
直接导致组织水平的干预措施,该干预措施与患者与治疗相匹配并不断
监视他们对治疗的反应。最后,这个项目很重要,因为它有可能大大
通过确定每个人可能获得最大收益的待遇来加速恢复,
最终有助于解决抑郁症的高人群负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy S B Bohnert其他文献
Amy S B Bohnert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy S B Bohnert', 18)}}的其他基金
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10595496 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Mobile Technology to Optimize Depression Treatment
移动技术优化抑郁症治疗
- 批准号:
10563279 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Diagnosing and Treating Veterans with Chronic Pain and Opioid Misuse
诊断和治疗患有慢性疼痛和阿片类药物滥用的退伍军人
- 批准号:
10313694 - 财政年份:2022
- 资助金额:
$ 76.27万 - 项目类别:
Reducing Non-Medical Opioid Use: An automatically adaptive mHealth Intervention
减少非医疗阿片类药物的使用:自动适应的移动医疗干预措施
- 批准号:
9416993 - 财政年份:2016
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10027245 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10162313 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
10165792 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Primary care intervention to reduce prescription opioid overdoses
初级保健干预减少处方阿片类药物过量
- 批准号:
9145508 - 财政年份:2015
- 资助金额:
$ 76.27万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8636645 - 财政年份:2014
- 资助金额:
$ 76.27万 - 项目类别:
Developing a Prescription Opioid Overdose Prevention Intervention
制定处方阿片类药物过量预防干预措施
- 批准号:
8811923 - 财政年份:2014
- 资助金额:
$ 76.27万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 76.27万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 76.27万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 76.27万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 76.27万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 76.27万 - 项目类别: