Quantification and automated characterization of mucus plug pathology in asthmatics
哮喘患者粘液栓病理学的量化和自动表征
基本信息
- 批准号:10676722
- 负责人:
- 金额:$ 8.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAffectAir MovementsAirway ResistanceAlgorithmsArchitectureAreaArtificial IntelligenceAsthmaAutomationBindingBiological MarkersBlood VesselsCharacteristicsChestChronicClinical TrialsCoughingDataData SetDiagnosticDiagnostic ProcedureDisease OutcomeElementsEventForced expiratory volume functionGoalsImageImpairmentInstitutionKnowledgeLabelLengthLinkLocationManualsMasksMeasuresModelingMonitorMucolyticsMucous body substanceNetwork-basedPathologyPatientsPerformancePharmaceutical PreparationsPhenotypePlayPositioning AttributeQuestionnairesResearchResistanceRoleScanningSchemeSeverity of illnessShapesSliceSpecific qualifier valueSpirometrySputumSymptomsSystemTechniquesTestingTherapeuticTimeTrainingTreesVariantVital capacityWidthX-Ray Computed Tomographyairway obstructionasthmaticasthmatic patientautomated algorithmautomated segmentationcandidate identificationcohortconvolutional neural networkdeep learning modeldesigngenetic associationimage processingimaging Segmentationimprovedlung imagingneural network architecturenovelnovel diagnosticspatient subsetsprospectiveradiological imagingradiologistreconstructionrespiratorysupervised learningtwo-dimensional
项目摘要
Project Summary
Mucus plugging has long been implicated in acute and fatal respiratory events in severe asthma, but we have
recently shown that chronic mucus plugging is common in asthmatic patients and appears mechanistically
linked with both impaired airflow and worsening disease severity. In particular, in analyses of baseline
computed tomography (CT) lung scans in asthmatic patients, we found that airway mucus plugs are highly
prevalent, persist for many years, frequently occur without cough and sputum symptoms, and are strongly
associated with airflow obstruction. However, it is unknown what radiographic characteristics of mucus
plugging cause severe airflow obstruction, in part because detailed characterization of mucus plugs on CT
scan is extremely labor intensive and requires highly trained thoracic radiologists for assessment. In Aim 1 of
this application, we propose to test the hypotheses, informed by our preliminary data, that three radiographic
features of mucus plugs— mucus plug volume, number of proximal plugs, and fraction of airway tree occluded
—all predict worsening airflow obstruction. We additionally propose that the airway tree can be converted into
a network of resistive elements in which the effective resistance of the entire tree is computed with and without
mucus plugs, and the relative contribution of mucus plugs to airway resistance can be determined. In Aim 2,
we aim to substantially lower the barrier to quantification of mucus plugging on CT scans by developing an
automated, convolutional neural network-based algorithm for mucus plug segmentation. We believe that our
findings will allow the identification of a large subset of patients with chronic severe “mucushigh” asthma and
raise possibilities for novel mucus-targeted treatments to improve airflow and other disease outcomes in this
subset of patients.
项目摘要
长期以来,在严重哮喘的急性和致命呼吸道事件中,粘液塞一直暗示,但我们有
最近表明,慢性粘液塞在哮喘患者中很常见,并且在机械上看起来
与气流受损和令人担忧的疾病严重程度有关。特别是在基线分析中
哮喘患者中的计算机断层扫描(CT)肺扫描,我们发现气道粘液塞高度
普遍存在,持续多年,经常出现没有咳嗽和痰症状,并且很强烈
与气流异议有关。但是,尚不清楚粘液的影像学特征
堵塞会导致严重的气流异议,部分原因是CT上粘液塞的详细表征
扫描是极度加密的,需要训练有素的胸腔放射科进行评估。在目标1中
我们建议通过我们的初步数据告知该假设,以测试三个放射线学的假设
粘液塞的功能 - 粘液插头量,近端插头数量和气道树的一部分
- 所有人都预测令人担忧的气流异议。我们还建议将气道树转换为
一个电阻元素的网络,其中有和没有有效的整棵树的有效电阻
可以确定粘液塞以及粘液塞对气道电阻的相对贡献。在AIM 2中,
我们的目标是通过开发一个
自动化的,基于卷积神经网络的算法,用于粘液塞进行分割。我们相信我们的
调查结果将允许鉴定大部分慢性严重“粘液”哮喘和
增加了新型粘液靶向治疗的可能性,以改善气流和其他疾病结果
患者子集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Huang其他文献
Brendan Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Huang', 18)}}的其他基金
Quantification and automated characterization of mucus plug pathology in asthmatics
哮喘患者粘液栓病理学的量化和自动表征
- 批准号:
10389530 - 财政年份:2022
- 资助金额:
$ 8.23万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别: