Framework for radiomics standardization with application in pulmonary CT scans

放射组学标准化框架及其在肺部 CT 扫描中的应用

基本信息

  • 批准号:
    10670050
  • 负责人:
  • 金额:
    $ 64.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Radiomics, or imaging biomarkers, are an active area of research and development that is increasing in breadth with more widespread access to large, patient image databases. Radiomics models have been applied in a wide range of diagnostics, classification tasks, and disease scoring; with advantages for efficient radiology workflow, reducing errors and highlighting important features, and providing additional information in challenging diagnostic cases. Accuracy of radiomics is dependent on a number of factors. The variability associated with the imaging chain including the particular imaging device/vendor, acquisition protocol, data processing, etc. is undesirable and can have a dramatic effect on a radiomics model’s performance. Successful radiomics models generally require careful data curation and standardization of protocols – often preventing successful or efficient modeling in large aggregations of patient data across institutions, vendors, etc. Moreover, even with careful attention to protocol, many imaging devices, like x-ray computed-tomography CT have patient- and scan-specific image properties that continue to add undesirable variability to a radiomics computation. In this work, we propose a framework for end-to-end modeling of a CT imaging system – integrating radiomics calculations as an explicit stage and imaging system output. This kind of rigorous modeling extends previous efforts to under- stand and control the performance of imaging systems. In this context, the proposed mathematical framework provides not only a mechanism for prediction of radiomics values based on the various system depend- ences that degrade their accuracy; but also informs recovery approaches to estimate the underlying “true” radiomics based on the underlying biology uncorrupted by the particular image properties (noise/resolution) of the patient image. We hypothesize that this new paradigm for radiomics computation will both standardize met- rics and improve quantitation. We will test these hypotheses and apply standardization methods to radiomics for interstitial lung disease (ILD, an application where lung textures provide substantial diagnostic information about the disease) through the following specific aims: Aim 1: Develop a mathematical framework for radiomics standardization, wherein both predictive “forward” models and “inverse” recovery models for ILD radiomics will be developed, characterized, and evaluated. Aim 2: Apply and validate prediction and standardization framework in physical systems using custom phantoms with lung textures and including a series of investiga- tions on well-characterized CT benches and CT scanners from all major vendors. Aim 3: Investigate the impact of standardization on radiomics modeling performance in clinical CT data. A multi-site study will establish the performance of standardized radiomics using the proposed framework in radiomics models for both regional and whole lung characterization. Successful completion of these aims will establish a new paradigm for stand- ardized radiomics computation that is applied and validate in multi-site data. This opens the doors to larger, more diverse imaging datasets and the potential for more efficient recovery of subtle imaging biomarkers.
项目概要/摘要 放射组学或成像生物标志物是一个活跃的研究和开发领域,其广度正在不断扩大 随着对大型患者图像数据库的更广泛访问,放射组学模型已被广泛应用。 一系列诊断、分类任务和疾病评分;具有高效放射学工作流程的优势, 减少错误并突出重要特征,并在具有挑战性的诊断中提供附加信息 放射组学的准确性取决于许多因素。 包括特定成像设备/供应商、采集协议、数据处理等在内的链条是不可取的 通常会对放射组学模型的性能产生巨大影响。 需要仔细的数据管理和协议标准化——通常会阻碍成功或高效的建模 在跨机构、供应商等的大量患者数据聚合中,即使仔细注意 根据协议,许多成像设备(例如 X 射线计算机断层扫描 CT)具有患者特定和扫描特定的图像 继续给放射组学计算增加不良变异性的属性在这项工作中,我们提出了一个。 CT 成像系统端到端建模框架 – 将放射组学计算集成为 这种严格的建模将先前的工作扩展到了底层。 在此背景下,提出了控制成像系统性能的数学框架。 不仅提供了一种基于各种系统依赖来预测放射组学值的机制 降低其准确性的因素;但也为估计潜在“真实”的恢复方法提供了信息; 基于基础生物学的放射组学不受特定图像属性(噪声/分辨率)的影响 我们追求这种放射组学计算的新范式将标准化met- 我们将测试这些假设并将标准化方法应用于放射组学。 间质性肺疾病(ILD,一种肺纹理提供大量诊断信息的应用程序) 疾病)通过以下具体目标: 目标 1:开发放射组学的数学框架 标准化,因此 ILD 放射组学的预测“正向”模型和“反向”恢复模型都将 目标 2:应用并验证预测和标准化。 物理系统中的框架使用具有肺部纹理的定制模型,并包括一系列研究 目标 3:调查影响。 将建立临床 CT 数据放射组学建模性能的标准化。 使用拟议的放射组学模型框架对两个区域进行标准化放射组学的表现 和全肺表征的成功完成将为标准建立一个新的范例。 在多站点数据中应用和验证的标准化放射组学计算为更大、更多的数据打开了大门。 多样化的成像数据集以及更有效地恢复微妙成像生物标志物的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianan Grace Gang其他文献

Jianan Grace Gang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianan Grace Gang', 18)}}的其他基金

Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
  • 批准号:
    10392088
  • 财政年份:
    2022
  • 资助金额:
    $ 64.79万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10684375
  • 财政年份:
    2022
  • 资助金额:
    $ 64.79万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10570160
  • 财政年份:
    2022
  • 资助金额:
    $ 64.79万
  • 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
  • 批准号:
    10491791
  • 财政年份:
    2021
  • 资助金额:
    $ 64.79万
  • 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
  • 批准号:
    10321949
  • 财政年份:
    2021
  • 资助金额:
    $ 64.79万
  • 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
  • 批准号:
    10296757
  • 财政年份:
    2021
  • 资助金额:
    $ 64.79万
  • 项目类别:

相似国自然基金

干旱内陆河高含沙河床对季节性河流入渗的影响机制
  • 批准号:
    52379031
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
  • 批准号:
    32371610
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
  • 批准号:
    72373005
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
  • 批准号:
    82360655
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
  • 批准号:
    42301019
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
  • 批准号:
    10760164
  • 财政年份:
    2023
  • 资助金额:
    $ 64.79万
  • 项目类别:
Intravaginal device for the treatment of pelvic pain and dyspareunia in female cancer survivors
用于治疗女性癌症幸存者盆腔疼痛和性交困难的阴道内装置
  • 批准号:
    10759026
  • 财政年份:
    2023
  • 资助金额:
    $ 64.79万
  • 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
  • 批准号:
    10811305
  • 财政年份:
    2023
  • 资助金额:
    $ 64.79万
  • 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
  • 批准号:
    10722387
  • 财政年份:
    2023
  • 资助金额:
    $ 64.79万
  • 项目类别:
Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
  • 批准号:
    10392088
  • 财政年份:
    2022
  • 资助金额:
    $ 64.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了