Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
基本信息
- 批准号:10670050
- 负责人:
- 金额:$ 64.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY / ABSTRACT
Radiomics, or imaging biomarkers, are an active area of research and development that is increasing in breadth
with more widespread access to large, patient image databases. Radiomics models have been applied in a wide
range of diagnostics, classification tasks, and disease scoring; with advantages for efficient radiology workflow,
reducing errors and highlighting important features, and providing additional information in challenging diagnostic
cases. Accuracy of radiomics is dependent on a number of factors. The variability associated with the imaging
chain including the particular imaging device/vendor, acquisition protocol, data processing, etc. is undesirable
and can have a dramatic effect on a radiomics model’s performance. Successful radiomics models generally
require careful data curation and standardization of protocols – often preventing successful or efficient modeling
in large aggregations of patient data across institutions, vendors, etc. Moreover, even with careful attention to
protocol, many imaging devices, like x-ray computed-tomography CT have patient- and scan-specific image
properties that continue to add undesirable variability to a radiomics computation. In this work, we propose a
framework for end-to-end modeling of a CT imaging system – integrating radiomics calculations as an
explicit stage and imaging system output. This kind of rigorous modeling extends previous efforts to under-
stand and control the performance of imaging systems. In this context, the proposed mathematical framework
provides not only a mechanism for prediction of radiomics values based on the various system depend-
ences that degrade their accuracy; but also informs recovery approaches to estimate the underlying “true”
radiomics based on the underlying biology uncorrupted by the particular image properties (noise/resolution) of
the patient image. We hypothesize that this new paradigm for radiomics computation will both standardize met-
rics and improve quantitation. We will test these hypotheses and apply standardization methods to radiomics for
interstitial lung disease (ILD, an application where lung textures provide substantial diagnostic information about
the disease) through the following specific aims: Aim 1: Develop a mathematical framework for radiomics
standardization, wherein both predictive “forward” models and “inverse” recovery models for ILD radiomics will
be developed, characterized, and evaluated. Aim 2: Apply and validate prediction and standardization
framework in physical systems using custom phantoms with lung textures and including a series of investiga-
tions on well-characterized CT benches and CT scanners from all major vendors. Aim 3: Investigate the impact
of standardization on radiomics modeling performance in clinical CT data. A multi-site study will establish
the performance of standardized radiomics using the proposed framework in radiomics models for both regional
and whole lung characterization. Successful completion of these aims will establish a new paradigm for stand-
ardized radiomics computation that is applied and validate in multi-site data. This opens the doors to larger, more
diverse imaging datasets and the potential for more efficient recovery of subtle imaging biomarkers.
项目摘要 /摘要
放射组学或成像生物标志物是一个积极的研发领域,广度正在增加
宽度更大,可以访问大型患者图像数据库。放射学模型已在宽阔的
诊断,分类任务和疾病评分范围;具有有效的放射学工作流的优势,
减少错误并突出重要功能,并在挑战诊断中提供其他信息
案例。放射线学的准确性取决于许多因素。与成像相关的可变性
包括特定成像设备/供应商,采集协议,数据处理等的链条是不希望的
并且可以对放射线模型的性能产生巨大影响。通常成功的放射线学模型
需要仔细的数据策划和协议的标准化 - 通常可以防止成功或有效的建模
在跨机构,供应商等大量的患者数据聚集中。
协议,许多成像设备,例如X射线计算机摄影CT具有患者和扫描特异性图像
继续为放射线计算增加不明显可变性的属性。在这项工作中,我们建议
CT成像系统端到端建模的框架 - 将放射线计算集成为
显式阶段和成像系统输出。这种严格的建模将以前的努力扩展到不足
站立并控制成像系统的性能。在这种情况下,提出的数学框架
不仅提供了基于各种系统依赖性预测放射线值值的机制
加密降低其准确性;但也告知恢复方法,以估算基本的“真实”
基于基本生物学的放射科学,由特定图像特性(噪声/分辨率)未腐败
病人形象。我们假设这项用于放射学计算的新范式都将标准化MET-
RICS并改善定量。我们将测试这些假设,并将标准化方法应用于放射线学
间质性肺疾病(ILD,肺纹理提供有关有关的大量诊断信息的应用
疾病)通过以下特定目的:目标1:为放射素学开发数学框架
标准化,其中ILD放射线学的预测性“正向”模型和“逆”恢复模型将
可以开发,表征和评估。目标2:应用和验证预测和标准化
物理系统中使用带有肺纹理的自定义幻像的框架,包括一系列研究
所有主要供应商的CT板凳和CT扫描仪的特征良好的CT扫描仪。目标3:调查影响
临床CT数据中放射学模型性能的标准化。多站点研究将建立
在两个区域的放射线学模型中使用拟议框架的标准化放射素学的性能
和整个肺特征。这些目标的成功完成将建立一个新的范式来实现
在多站点数据中应用和验证的弧形放射线计算。这为更大,更多的门打开了
各种成像数据集以及更有效地恢复微妙成像生物标志物的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jianan Grace Gang的其他基金
Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
- 批准号:1039208810392088
- 财政年份:2022
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:1068437510684375
- 财政年份:2022
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:1057016010570160
- 财政年份:2022
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
- 批准号:1049179110491791
- 财政年份:2021
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Patient-specific, high-sensitivity spectral CT for assessment of pancreatic cancer
用于评估胰腺癌的患者特异性高灵敏度能谱 CT
- 批准号:1029675710296757
- 财政年份:2021
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Nonlinear performance analysis and prediction for robust low dose lung CT
鲁棒低剂量肺部 CT 的非线性性能分析和预测
- 批准号:1032194910321949
- 财政年份:2021
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:1076016410760164
- 财政年份:2023
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Intravaginal device for the treatment of pelvic pain and dyspareunia in female cancer survivors
用于治疗女性癌症幸存者盆腔疼痛和性交困难的阴道内装置
- 批准号:1075902610759026
- 财政年份:2023
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
- 批准号:1081130510811305
- 财政年份:2023
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:1072238710722387
- 财政年份:2023
- 资助金额:$ 64.79万$ 64.79万
- 项目类别:
Framework for radiomics standardization with application in pulmonary CT scans
放射组学标准化框架及其在肺部 CT 扫描中的应用
- 批准号:1039208810392088
- 财政年份:2022
- 资助金额:$ 64.79万$ 64.79万
- 项目类别: