Development of a Multi-scale closed loop model for hemorrhagic shock: a platform to assess REBOA performance
失血性休克多尺度闭环模型的开发:评估 REBOA 性能的平台
基本信息
- 批准号:10669644
- 负责人:
- 金额:$ 70.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAccelerationAddressAdoptedAnimal ExperimentationAnimal ModelAnimalsAortaBalloon OcclusionBaroreflexBehaviorBiologicalBiological MarkersBlood VesselsBlood VolumeBlood flowCardiac OutputCardiovascular systemCathetersCessation of lifeChestClinicalComputer ModelsComputer softwareCoupledDevelopmentDevicesDistalEngineeringEnvironmentEvaluationFamily suidaeFeedbackGrowthHemorrhageHemorrhagic ShockHomeostasisInjuryInstitutionInterventionIschemiaKidneyKidney FailureKnowledgeLiquid substanceMechanicsMethodsMilitary PersonnelModelingOxygenPerformancePerfusionPhasePhysiciansPhysiologicalPre-Clinical ModelPreclinical TestingRenal functionReperfusion InjuryReperfusion TherapyResearchResuscitationRiskScientistShockStentsSumTechniquesTestingTimeTrainingTraumaTraumatic injuryValidationVena Cava FiltersVenousWorkcomputer frameworkcomputerized toolsdesignhemodynamicsimprovedin silicoin vivoindexinginnovationminimally invasivemulti-scale modelingmultidisciplinarynext generationnovelopen sourceoxygen transportporcine modelpressurepreventpreventable deathresponserisk mitigationshear stresssimulation environmenttool
项目摘要
Project Summary
Hemorrhagic shock is the leading cause of preventable death after a traumatic injury, and accounts for 91% of
military and 35% of civilian fatalities after trauma. Injuries to non-compressible intracavity regions, such as the
torso and abdomen, are a major clinical challenge due to a lack of appropriate interventions, and represent 30-
40% of early fatalities. To address this problem, endovascular hemorrhage control (EHC) devices and minimally
invasive techniques such as Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) have been
increasingly adopted. REBOA involves full inflation of a balloon catheter in the aorta, which restricts blood flow
distal to the occlusion and consequently minimizes bleeding. While REBOA is effective at restoring proximal
perfusion, the reductions in blood flow can result in ischemia-reperfusion injuries that increase the risk of
subsequent renal failure. As such, there is a pressing need to identify optimal occlusion size, timing, and duration
of REBOA deployment. To date, these important knowledge gaps are hindered by expensive and time intensive
large animal models that slow the pace of innovation. To address this major gap, we propose to develop and
validate a novel multi-scale computational model that will allow us to simulate the in vivo physiologic response
to hemorrhagic shock. Using a 3D-0D closed loop approach of the cardiovascular system, we will be able to
simulate the critical feedback loops and biologic response functions to render a physiologically relevant model.
These methods have been previously used to inform the design of cardiovascular stents and inferior vena cava
filters, but none to our knowledge have been exploited for the evaluation of REBOA or any other EHC device.
Our central hypothesis is that computational modeling of blood flow within the aorta and systemic vascular
network will generate accurate and robust values for pressure, flow and shear rates within 5% error, closely
mimicking in vivo behavior. The objective is to use this computational framework to: 1) quantify the local and
systemic hemodynamics (i.e., pressure, flow rate, shear stress, oxygen transport, etc.) during phases of active
hemorrhage, aortic occlusion with REBOA, and resuscitation, 2) identify vascular regions that are vulnerable to
ischemic damage as a result of the altered hemodynamics, 3) predict key physiologic responses related to
vascular compliance, oxygen delivery and renal autoregulation during hemorrhage and aortic occlusion, and 4)
determine optimal aortic occlusion size and duration of partial vs. full occlusion strategies to prevent ischemia-
reperfusion injuries and renal failure. Successful development and validation of this in silico model will greatly
contribute to the preclinical testing and optimization of EHC devices, minimizing the need for large animal studies
and also open doors for the study of other transient hemodynamic conditions within the cardiovascular system.
项目摘要
出血性休克是创伤后可预防死亡的主要原因,占91%
创伤后军事和35%的平民死亡。不可压缩的腔内区域受伤,例如
由于缺乏适当的干预措施,躯干和腹部是一个主要的临床挑战,代表30-
早期死亡的40%。为了解决这个问题,血管内出血控制(EHC)设备和最少
侵入性技术,例如主动脉(REBOA)的复苏性血管内气囊闭塞(REBOA)
越来越多地采用。 REBOA涉及在主动脉中的气球导管的完全充气,这限制了血液流动
闭塞远端,从而最大程度地减少出血。虽然Reboa有效地恢复近端
灌注,血液流量的减少会导致缺血 - 再灌注损伤,从而增加
随后的肾衰竭。因此,有迫切需要确定最佳的闭塞大小,时机和持续时间
Reboa部署。迄今为止,这些重要的知识差距受到昂贵且耗时的限制
大型动物模型会减慢创新速度。为了解决这一主要差距,我们建议开发和
验证一种新型的多尺度计算模型,该模型将使我们能够模拟体内生理反应
要出血性休克。使用心血管系统的3D-0D闭环方法,我们将能够
模拟关键反馈回路和生物响应函数以呈现与物理相关的模型。
这些方法先前已用于告知心血管支架和下腔静脉的设计
过滤器,但据我们所知,尚未探索用于评估REBOA或任何其他EHC设备的过滤器。
我们的中心假设是主动脉和全身血管内血流的计算建模
网络将在5%误差范围内产生压力,流量和剪切速率的准确和稳健值
模仿体内行为。目的是使用此计算框架来:1)量化本地和
在活动阶段
出血,带有REBOA的主动脉闭塞和复苏,2)识别容易受到伤害的血管区域
由于血液动力学改变而导致缺血性损害,3)预测与
血管顺应性,氧气递送和肾脏自动调节在出血和主动脉闭塞过程中,4)
确定最佳主动脉闭塞大小和部分的持续时间与完全闭塞策略,以防止缺血 -
再灌注损伤和肾衰竭。在计算机模型中成功开发和验证将大大
有助于EHC设备的临床前测试和优化,最大程度地减少了对大型动物研究的需求
并为研究心血管系统中其他瞬时血液动力学状况的研究打开门。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elaheh Rahbar其他文献
Elaheh Rahbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elaheh Rahbar', 18)}}的其他基金
Development of a Multi-scale closed loop model for hemorrhagic shock: a platform to assess REBOA performance
失血性休克多尺度闭环模型的开发:评估 REBOA 性能的平台
- 批准号:
10412269 - 财政年份:2022
- 资助金额:
$ 70.67万 - 项目类别:
An Integrated Investigation of the Interaction Between PUFAs and Genetic Variants in Trauma and Critical Care
多不饱和脂肪酸与基因变异在创伤和重症监护中相互作用的综合研究
- 批准号:
10348226 - 财政年份:2021
- 资助金额:
$ 70.67万 - 项目类别:
An Integrated Investigation of the Interaction Between PUFAs and Genetic Variants in Trauma and Critical Care
多不饱和脂肪酸与基因变异在创伤和重症监护中相互作用的综合研究
- 批准号:
10222752 - 财政年份:2017
- 资助金额:
$ 70.67万 - 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABCC2转运蛋白在克氏原螯虾腹部肌肉中抗汞积累特性研究
- 批准号:32302982
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 70.67万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10522570 - 财政年份:2022
- 资助金额:
$ 70.67万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 70.67万 - 项目类别:
Development of Magnetic Resonance Fingerprinting in Kidney for Evaluation of Renal Cell Carcinoma
肾脏磁共振指纹图谱用于肾细胞癌评估的发展
- 批准号:
10707150 - 财政年份:2022
- 资助金额:
$ 70.67万 - 项目类别: