Unfolding the Link Between the Endoplasmic Reticulum, AIS Shortening, and Cognitive Impairment in Type 2 Diabetes

揭示内质网、AIS 缩短和 2 型糖尿病认知障碍之间的联系

基本信息

  • 批准号:
    10661717
  • 负责人:
  • 金额:
    $ 5.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The axon initial segment (AIS) is a critical mediator of neuronal function, and changes in its structure or location have been implicated in several neurodegenerative conditions. In diseases such as diabetes and Alzheimer's disease, there is a shortening of the AIS with cognitive impairment. Dementia and mild cognitive impairment are well recognized comorbidities of type 2 diabetes, termed diabetic encephalopathy, that lack in course modifying treatment options. AIS shortening may be reversible, hence investigating the mechanism responsible could address this significant gap in patient care by providing new therapeutic targets. The overall goal of this proposal is to examine the cellular mechanisms responsible for AIS shortening in these patients while providing the training necessary to support the career development of the applicant. Endoplasmic reticulum (ER) stress, a cellular condition that activates the unfolded protein response (UPR) has been implicated in diabetic encephalopathy. Preliminary studies show induction of ER stress induces AIS shortening, and inhibition of ER stress prevents AIS shortening in vitro. This NRSA F30 proposal will test the hypothesis that endoplasmic reticulum stress modulates the axon initial segment leading to cognitive impairment in type 2 diabetes utilizing two aims. Aim 1 will test the hypothesis that the UPR PERK pathway underlies ER stress- induced AIS shortening. The PERK pathway of the UPR activates calcineurin, a phosphatase associated with AIS shortening. This aim will pharmacologically and genetically inhibit PERK in mouse cortical neuron culture and evaluate changes in AIS structure and neuronal network activity following ER stress induction. Aim 2 will test the hypothesis that ER stress inhibition ameliorates AIS shortening and cognitive impairment in diabetes. This aim will inhibit ER stress in db/db mice, an established model of type 2 diabetes, and evaluate changes in cognitive performance and AIS structure. Confirmation of the central hypothesis in the proposed study will identify ER stress and AIS shortening as therapeutic targets to mitigate cognitive impairment in diabetic encephalopathy. Completion of this proposal will also provide opportunities for training key to the applicant's future research goal to be an independent physician scientist studying changes in neural transmission and cognitive defects caused by neurodegenerative diseases. This proposal is significant because completion will elucidate a target for therapeutic research to treat this condition in patients with type 2 diabetes while training a future physician scientist who will care for them.
项目概要/摘要 轴突初始段 (AIS) 是神经元功能的关键介质,其结构或变化 位置与多种神经退行性疾病有关。在糖尿病等疾病中 阿尔茨海默病,AIS 缩短并伴有认知障碍。痴呆症和轻度认知障碍 损伤是 2 型糖尿病公认的合并症,称为糖尿病脑病,缺乏 课程修改治疗方案。 AIS 缩短可能是可逆的,因此研究其机制 负责人可以通过提供新的治疗目标来解决患者护理方面的这一重大差距。整体 该提案的目标是检查导致这些患者 AIS 缩短的细胞机制 同时提供必要的培训以支持申请人的职业发展。内质 网状(ER)应激是一种激活未折叠蛋白反应(UPR)的细胞状况 与糖尿病脑病有关。初步研究表明 ER 应激的诱导会导致 AIS 缩短, 抑制 ER 应激可防止体外 AIS 缩短。 NRSA F30 提案将检验这一假设 内质网应激调节轴突起始段导致 2 型认知障碍 糖尿病有两个目标。目标 1 将检验以下假设:UPR PERK 通路是 ER 应激的基础 引起 AIS 缩短。 UPR 的 PERK 通路激活钙调神经磷酸酶,这是一种与 AIS 缩短。这一目标将从药理学和遗传学上抑制小鼠皮层神经元培养物中的 PERK 并评估 ER 应激诱导后 AIS 结构和神经元网络活动的变化。目标2将 检验 ER 应激抑制可改善糖尿病患者 AIS 缩短和认知障碍的假设。 这一目标将抑制 db/db 小鼠(一种已建立的 2 型糖尿病模型)的 ER 应激,并评估 认知表现和 AIS 结构。拟议研究中中心假设的确认将 确定 ER 应激和 AIS 缩短作为减轻糖尿病认知障碍的治疗目标 脑病。完成该提案还将为申请人提供关键的培训机会 未来的研究目标是成为一名独立的医师科学家,研究神经传递和神经传递的变化 神经退行性疾病引起的认知缺陷。该提案意义重大,因为完成后将 阐明治疗研究的目标,以治疗 2 型糖尿病患者的这种情况,同时培训 未来的医学科学家将照顾他们。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennae Nicolle Shelby其他文献

Jennae Nicolle Shelby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennae Nicolle Shelby', 18)}}的其他基金

Unfolding the Link Between the Endoplasmic Reticulum, AIS Shortening, and Cognitive Impairment in Type 2 Diabetes
揭示内质网、AIS 缩短和 2 型糖尿病认知障碍之间的联系
  • 批准号:
    10469985
  • 财政年份:
    2021
  • 资助金额:
    $ 5.27万
  • 项目类别:
Unfolding the Link Between the Endoplasmic Reticulum, AIS Shortening, and Cognitive Impairment in Type 2 Diabetes
揭示内质网、AIS 缩短和 2 型糖尿病认知障碍之间的联系
  • 批准号:
    10314355
  • 财政年份:
    2021
  • 资助金额:
    $ 5.27万
  • 项目类别:

相似国自然基金

神经系统中动作电位双稳传导研究
  • 批准号:
    12375033
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
  • 批准号:
    31930061
  • 批准年份:
    2019
  • 资助金额:
    303 万元
  • 项目类别:
    重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
  • 批准号:
    61901469
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
  • 批准号:
    81900300
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
  • 批准号:
    10583283
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
  • 批准号:
    10562265
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
  • 批准号:
    10678156
  • 财政年份:
    2023
  • 资助金额:
    $ 5.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了