BRIDGE Center Standards Core
BRIDGE 中心标准核心
基本信息
- 批准号:10661029
- 负责人:
- 金额:$ 133.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionAnatomyArtificial IntelligenceAwarenessBackBehavioralBenchmarkingBridge to Artificial IntelligenceBusinessesCommunitiesConfusionConsultationsConsumptionDataData CollectionData EngineeringData ProvenanceData ScientistData SetDepositionDevelopmentDisciplineDiseaseDisparateDocumentationEcosystemElementsEnsureEnvironmentEquipment and supply inventoriesEvaluationFAIR principlesGenerationsGenesGoalsHumanInvestmentsKnowledgeLanguageLicensingLife Cycle StagesLinkMachine LearningModalityModelingModernizationMolecularMorphologic artifactsOntologyOutputPhenotypeProtocols documentationProviderQuality ControlReadinessRegistriesReportingReproducibilityResearchResearch PersonnelResourcesSeaSemanticsServicesSourceSpecific qualifier valueSpecificityStandardizationSystemTerminologyTimeTrainingTranslational ResearchUnited States National Institutes of HealthUpdateVariantVocabularyWorkdashboarddata disseminationdata harmonizationdata ingestiondata modelingdata qualitydata reusedata sharingdata standardsempowermentinsightinteroperabilitylarge datasetsmachine learning modelnovelopen sourceprogramsquality assuranceresponseskillstoolweb portalworking group
项目摘要
BRIDGE Center Standards Core Project Summary
AI offers great potential for the discovery of novel biomedical insights from linkages between disparate,
cross-domain datasets. Unfortunately, traditional hypothesis-driven datasets tend to be narrowly focused on
the targeted problem domain with little consideration to “AI-readiness”. To best enable the use of such datasets
in data-driven and cross-domain discovery, they must be made Findable, Accessible, Interoperable, and
Reusable (FAIR). Lack of FAIRness is particularly problematic for AI, which is data-hungry. To fully leverage the
power of AI approaches, researchers need to find and reuse data to combine into larger datasets, and the data
must be interoperable or harmonized to be combined meaningfully. Transforming pre-existing datasets into
AI-ready data is challenging, requiring extensive linking and curation by human experts. This challenge is
exacerbated when annotating and linking data across domains, where standards may be disparate in purpose
and specificity. Finally, many datasets do not adhere to best practices in data transparency, including content
attribution and conditions on distribution and reuse. These additional considerations of Traceability, Licensing,
and Connectedness create an operationalized model for FAIR: FAIR-TLC.
Overcoming the barriers to FAIR-TLC is key to translational science and AI-driven biomedical discovery. Our
team has led standards development efforts in numerous large consortia, including the GA4GH, HL7, and
N3C. Our standards for representing biomedical concepts have been widely adopted, including those for
human phenotypes (e.g., HPO, GA4GH Phenopackets), diseases (NCIt, Mondo, ICD-11), genes (Gene
Ontology), anatomy (Uberon), and molecular variation (GA4GH VRS). We have developed standards and tools
to address data provenance (SEPIO), contributions (Contributor Attribution Model), licensing barriers (Data
Use Ontology, Reusable Data Project), and connectivity (Linked data Model Language, LinkML).
We will build on our previous work, collaborative skills, and technical knowledge to develop a framework to
enable the harmonization of standards across biomedical domains. We will form working groups with
representatives of the Data Generation Projects (DGPs) to document use cases and synthesize data standard
requirements. We will provide protocols and training for specifying standards, and provide concierge services
in support of all deliverables and activities. We will create a version-controlled Bridge2AI Standards Registry to
inventory standards for use by the DGPs, specified in the modality-agnostic LinkML framework, discoverable
through the interactive Standards Hub, and automatically exportable to technical artifacts through our Data
Transformation Toolbox. We will build a Standards Evaluation Dashboard for assessment and discovery of
standards in datasets from Bridge2AI Data Generation Projects. We will promote best practices in the
transparent and responsible sharing of datasets and ML models through DUO, Datasheets, and Model Cards.
BRIDGE 中心标准核心项目摘要
人工智能为从不同的、
不幸的是,传统的假设驱动数据集往往只关注跨领域数据集。
很少考虑“人工智能就绪性”的目标问题领域,以便最好地使用此类数据集。
在数据驱动和跨领域发现中,它们必须变得可查找、可访问、可互操作和
可重复使用(公平)对于需要充分利用数据的人工智能来说,缺乏公平性尤其成问题。
借助人工智能方法的力量,研究人员需要查找并重用数据以组合成更大的数据集,并且这些数据
必须可互操作或协调才能将现有数据集有意义地组合起来。
人工智能就绪的数据具有挑战性,需要人类专家进行广泛的链接和管理。
在跨域注释和链接数据时会加剧,其中标准的目的可能不同
最后,许多数据集不遵守数据透明度的最佳实践,包括内容。
分配和再利用的归属和条件。可追溯性、许可的这些额外考虑因素。
和连通性为 FAIR 创建了一个可操作的模型:FAIR-TLC。
克服 FAIR-TLC 障碍是转化科学和人工智能驱动的生物医学发现的关键。
该团队领导了众多大型联盟的标准开发工作,包括 GA4GH、HL7 和
我们代表生物医学概念的标准已被广泛采用,包括那些
人类表型(例如 HPO、GA4GH Phenopackets)、疾病(NCIt、Mondo、ICD-11)、基因(Gene
我们开发了标准和工具。
解决数据来源 (SEPIO)、贡献(贡献者归因模型)、许可障碍(数据
使用本体、可重用数据项目)和连接性(链接数据模型语言,LinkML)。
我们将在之前的工作、协作技能和技术知识的基础上开发一个框架
我们将与各生物医学领域建立工作组。
数据生成项目 (DGP) 的代表记录用例并综合数据标准
我们将提供指定标准的协议和培训,并提供礼宾服务。
为了支持所有可交付成果和活动,我们将创建一个版本控制的 Bridge2AI 标准注册表。
DGP 使用的清单标准,在与模态无关的 LinkML 框架中指定,可发现
通过交互式标准中心,并通过我们的数据自动导出到技术工件
我们将构建一个标准评估仪表板,用于评估和发现
Bridge2AI 数据生成项目的数据集标准我们将推广最佳实践。
通过 DUO、数据表和模型卡透明、负责任地共享数据集和 ML 模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica Cecilia Munoz-Torres其他文献
Monica Cecilia Munoz-Torres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica Cecilia Munoz-Torres', 18)}}的其他基金
Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program
NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心
- 批准号:
10661023 - 财政年份:2022
- 资助金额:
$ 133.76万 - 项目类别:
Integration, Dissemination and Evaluation(BRIDGE) Center for the NIH Bridge to Artificial Intelligence (BRIDGE2AI) Program
NIH 人工智能之桥 (BRIDGE2AI) 项目集成、传播和评估 (BRIDGE) 中心
- 批准号:
10473239 - 财政年份:2022
- 资助金额:
$ 133.76万 - 项目类别:
相似国自然基金
锶银离子缓释钛表面通过线粒体自噬调控NLRP3炎症小体活化水平促进骨整合的机制研究
- 批准号:82301139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
万寿菊黄酮通过MAPK/Nrf2-ARE通路缓解肉鸡肠道氧化应激损伤的作用机制
- 批准号:32302787
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
- 批准号:32303021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
- 批准号:82373030
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 133.76万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 133.76万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 133.76万 - 项目类别:
The RaDIANT Health Systems Intervention for Equity in Kidney Transplantation
Radiant 卫生系统干预肾移植的公平性
- 批准号:
10681998 - 财政年份:2023
- 资助金额:
$ 133.76万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 133.76万 - 项目类别: