Deep Learning for Detecting the Early Anatomical Effects of Alzheimer's Disease
深度学习检测阿尔茨海默病的早期解剖学影响
基本信息
- 批准号:10658045
- 负责人:
- 金额:$ 19.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAnatomic ModelsAnatomyAtrophicBehaviorCell DeathClinicalClinical ResearchClinical TrialsComputer softwareDarknessDataData SetDetectionDevelopmentDiagnosisDimensionsDiseaseEarly DiagnosisEnsureGenerationsHippocampusImageImpaired cognitionLabelLearningLeftLesionLocationMagnetic Resonance ImagingManualsMapsModalityModernizationNeuroanatomyNeurologicNoisePicture Archiving and Communication SystemPositron-Emission TomographyPredispositionProceduresProcessProgressive DiseasePropertyProtocols documentationResearchScanningScheduleSensitivity and SpecificitySeriesShapesSiteStructureSurrogate EndpointTechniquesTechnologyTestingThalamic structureTherapeutic InterventionTimeTrainingTreatment EfficacyValidationVariantVentricularclinical applicationclinical imagingdeep learningdeep neural networkdesigndisease classificationfollow-upimaging modalityimprovedlearning networklongitudinal analysisneuropathologysimulationtherapeutically effectivetoolusability
项目摘要
Project Summary
Longitudinal, within-subject approaches, have the potential to increase sensitivity and specificity, improving
the efficiency of clinical trials by requiring fewer subjects and providing potential surrogate endpoints to
assess therapeutic efficacy. There is also great potential that these tools will enable more sophisticated
anatomical modeling to better understand the temporal dynamics of progression. In Alzheimer’s Disease in
particular, early detection, prior to widespread and likely irreversible cell death, is crucial for the development
of effective therapeutic interventions. However, longitudinal tools have not yet been optimized for use in
clinical studies. Challenges include the reduction of noise across serial scans while providing each time point
equal relative weighting to avoid bias; adequately and appropriately accounting for atrophy; and handling
varying MRI contrast and distortion across time. In this proposal, we seek to improve longitudinal analysis in a
number of ways, leveraging the power of modern deep learning to increase accuracy, make it applicable to
any type of MRI contrast, radically reduce execution time, as well as make it usable in direct clinical
applications.
To achieve these aims we will employ newly developed image synthesis techniques to train networks to detect
small, “true” anatomical change hidden within a set of large-scale “MRI” distortions, that will capture
longitudinal differences in image acquisition such as gradient nonlinearities, field strength and B0 distortions,
and sequence parameter variations. The change-detection network will be cascaded with a deep registration
network that will learn to decompose the temporal warp into uninteresting MRI distortions and interesting
anatomical effects, then both warp fields and the aligned images will be provided to a segmentation network
to ensure no information is lost by the registration. The networks will learn to ignore MRI effects based on
their stereotypical behavior (e.g. the one-dimensionality of B0 distortions, the spatial smoothness of gradient
nonlinearities) and to detect the subtle anatomical changes such as increasing ventricular size or decreasing
hippocampal volume. The result will be a set of robust contrast-and-distortion-agnostic tools that highlight
potential disease effects for clinicians.
项目摘要
纵向内部的方法有可能提高灵敏度和特异性,改善
临床试验的效率通过减少受试者并为潜在的替代终点提供的效率
评估治疗效率。这些工具也将使更复杂的工具具有很大的潜力
解剖模型可以更好地理解进展的临时动力学。在阿尔茨海默氏病
特别的,早期检测,在宽度和可能不可逆的细胞死亡之前,对发展至关重要
有效的治疗干预措施。但是,尚未优化纵向工具用于
临床研究。挑战包括在每个时间点提供串行扫描的噪声降低
相对的相对权重以避免偏见;充分,适当地考虑萎缩;和处理
随时间变化的MRI对比度和失真。在此提案中,我们试图改善
多种方式,利用现代深度学习的力量提高准确性,使其适用于
任何类型的MRI对比度,从根本上减少执行时间,并使其可在直接临床中使用
申请。
为了实现这些目标,我们将采用新开发的图像合成技术来训练网络以检测
在一组大规模的“ MRI”扭曲中隐藏了小的“真实”解剖变化,它将捕获
图像采集的纵向差异,例如梯度非线性,野外强度和B0扭曲,
和序列参数变化。变更检测网络将通过深入注册级联
将学会将临时翘曲分解为无趣的MRI扭曲和有趣的网络
解剖效应,然后将两个经线字段和对齐图像提供给分割网络
确保注册不会丢失任何信息。网络将学会根据
它们的定型行为(例如,B0扭曲的一维性,梯度的空间平滑度
非线性)并检测微妙的解剖变化,例如增加心室尺寸或减小
海马体积。结果将是一组强大的对比度和分数不合骨的工具,这些工具突出显示
对临床医生的潜在疾病影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce Fischl其他文献
Bruce Fischl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce Fischl', 18)}}的其他基金
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
- 批准号:
10664289 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10373401 - 财政年份:2021
- 资助金额:
$ 19.87万 - 项目类别:
MGH/HMS Internship in NeuroImaging Analysis
MGH/HMS 神经影像分析实习
- 批准号:
10525252 - 财政年份:2021
- 资助金额:
$ 19.87万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10224850 - 财政年份:2020
- 资助金额:
$ 19.87万 - 项目类别:
Algorithms for cross-scale integration and analysis
跨尺度集成和分析算法
- 批准号:
10038179 - 财政年份:2020
- 资助金额:
$ 19.87万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10295766 - 财政年份:2018
- 资助金额:
$ 19.87万 - 项目类别:
Segmenting Brain Structures for Neurological Disorders
分割神经系统疾病的大脑结构
- 批准号:
10063916 - 财政年份:2018
- 资助金额:
$ 19.87万 - 项目类别:
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 19.87万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
- 批准号:
10661931 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases
前驱期和症状性路易体病中的微生物组-肠-脑功能障碍
- 批准号:
10720677 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别:
Midlife cardiovascular stress physiology and preclinical cerebrovascular disease
中年心血管应激生理学与临床前脑血管疾病
- 批准号:
10720054 - 财政年份:2023
- 资助金额:
$ 19.87万 - 项目类别: