Engineering Injectable Microporous Hydrogels for Diabetic Wound Repair
用于糖尿病伤口修复的工程可注射微孔水凝胶
基本信息
- 批准号:10657614
- 负责人:
- 金额:$ 63.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffinityAmino Acid SubstitutionAnimal ModelBehaviorBiocompatible MaterialsBlood VesselsBrainCell LineCellsChemicalsClinicalComplicationCrosslinkerDefectDermalDiabetic Foot UlcerDiabetic mouseDiameterEngineeringEnvironmentEnzymesExhibitsFamily suidaeForeign-Body ReactionFormulationGelGenerationsGeometryGoalsHair follicle structureHeparinHeterogeneityHistologyHydrogelsImmune responseImmunofluorescence ImmunologicIn SituIn VitroIndividualInflammationInflammatoryInjectableInstructionIntestinesIntramuscularInvestigationIslandLower ExtremityMacrophageMechanicsMediatingMicrofluidicsMicroscopicMicrospheresNatural regenerationOutcomePathologicPatientsPeptidesPerfusionPilot ProjectsPorosityPredispositionProliferatingPropertyProteolysisResistanceSkinSkin wound healingSplint DeviceStructureTestingThickTissuesUlcerVascularizationWound modelsangiogenesisarticular cartilagebioscaffoldcell behaviorcell motilitychemokinedesigndiabeticdiabetic ulcerdiabetic wound healinghealingimmune activationimmunogenicityimmunoregulationimplantationimprovedin vivoinventionlimb amputationmigrationnon-diabeticnovelparticleporous hydrogelpost strokeprematureratiometricregenerativeresponsescaffoldsecondary outcomestandard of caretissue regenerationwoundwound closurewound environmentwound healingwound treatment
项目摘要
PROJECT SUMMARY
In this proposal, we aim to engineer a biomaterial scaffold to accelerate diabetic wound closure by improving upon a
new sub-class of hydrogel biomaterials we have invented called Microporous Annealed Particle gel or MAP gel. MAP
gels are composed of microscopic spherical building blocks made using microfluidic generation and assembled in situ to
form a stable MAP scaffold. MAP scaffolds have been shown to improve tissue healing in both skin and brain through a
porosity-dependent reduction in wound inflammation and promotion of cell/tissue integration. We are focusing on
material improvements to counter three known difficulties for material-based treatment of diabetic wounds: abnormally
high immune activation, increased degradative microenvironment, and diminished new tissue generation. Specifically, we
have identified three MAP properties that we can independently modulate for scientific optimization: pore geometry
(known immunomodulatory parameter), degradability (premature material degradation results in loss of porous
geometry), and heterogeneous heparin “micro-islands” (a novel material strategy we have developed to improve intra-
scaffold angiogenesis). We hypothesize that investigating and optimizing each property individually will accelerate
diabetic wound closure and, finally, that the optimized properties can be combined synergistically.
We will evaluate and optimize each material property using the following characterization workflow: in vitro property
quantification (property-dependent), in vitro cell response (survival, proliferation, and migration), in vivo immune
response (analysis by FACS), in vivo material degradation (analysis by histology), and in vivo tissue healing/regeneration
(analysis by immunohistology). Our studies focus on the diabetic wound environment through use of dermal cell lines in
vitro and a diabetic mouse (db/db) splinted wound healing model. Each Aim of our approach isolates an individual
material property to simplify the investigation. For example, pore geometry impact is investigated using a single hydrogel
formulation and hydrogel formulation impact uses a single pore geometry (constant formulation and pore geometry taken
from our successful non-diabetic studies). If successful, this project will provide a better understanding of tissue response
to a new class of biomaterial and produce an inexpensive and effective scaffold treatment option for accelerating diabetic
wound closure.
项目摘要
在此提案中,我们旨在设计生物材料支架,以通过改善A来加速糖尿病伤口。
我们发明了称为微孔退火颗粒凝胶或MAP凝胶的新型水凝胶生物材料的子类。地图
凝胶由使用微流体产生制成的微观球形构件组成,并原位组装
形成稳定的地图支架。已显示MAP脚手架可以通过A改善皮肤和大脑的组织愈合
孔隙率依赖性减少在细胞/组织整合的创新和促进中。我们专注于
材料改进以抵消基于材料的糖尿病伤口的三个已知困难:异常
高免疫激活,降解微环境增加并减少了新的组织产生。具体来说,我们
已经确定了我们可以独立调节科学优化的三个地图属性:孔几何形状
(已知的免疫调节参数),降解性(过早材料降解导致多孔的损失
几何形状)和异质肝素“微岛”(我们已经开发出一种新的材料策略,旨在改善内部
脚手架血管生成)。我们假设调查和优化每个物业将分别加速
糖尿病伤口闭合,最后,可以协同组合优化的特性。
我们将使用以下表征工作流来评估和优化每个材料属性:体外属性
体外免疫的数量(依赖性),体外细胞反应(生存,增殖和迁移)
反应(FACS分析),体内材料降解(组织学分析)和体内组织愈合/再生
(通过免疫组织学分析)。我们的研究通过在
体外和糖尿病小鼠(DB/dB)夹住伤口愈合模型。我们方法的每个目标都会隔离一个人
材料财产以简化投资。例如,使用单个水凝胶研究了孔的几何影响
配方和水凝胶配方冲击使用单个孔的几何形状(恒定配方和孔的几何形状
根据我们成功的非糖尿病研究)。如果成功,该项目将更好地理解组织反应
到一类新的生物材料,并产生一种廉价且有效的脚手架治疗选择,以加速糖尿病
伤口闭合。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In silico optimization of heparin microislands in microporous annealed particle hydrogel for endothelial cell migration.
- DOI:10.1016/j.actbio.2022.05.049
- 发表时间:2022-08
- 期刊:
- 影响因子:9.7
- 作者:Pruett, Lauren J.;Taing, Alex L.;Singh, Neharika S.;Peirce, Shayn M.;Griffin, Donald R.
- 通讯作者:Griffin, Donald R.
De novo tissue formation using custom microporous annealed particle hydrogel provides long-term vocal fold augmentation.
- DOI:10.1038/s41536-023-00281-8
- 发表时间:2023-02-23
- 期刊:
- 影响因子:7.2
- 作者:Pruett, Lauren J.;Kenny, Hannah L.;Swift, William M.;Catallo, Katarina J.;Apsel, Zoe R.;Salopek, Lisa S.;Scumpia, Philip O.;Cottler, Patrick S.;Griffin, Donald R.;Daniero, James J.
- 通讯作者:Daniero, James J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Richieri Griffin其他文献
Donald Richieri Griffin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Richieri Griffin', 18)}}的其他基金
Engineering Injectable Microporous Hydrogels for Diabetic Wound Repair
用于糖尿病伤口修复的工程可注射微孔水凝胶
- 批准号:
10460610 - 财政年份:2021
- 资助金额:
$ 63.04万 - 项目类别:
Engineering Injectable Microporous Hydrogels for Diabetic Wound Repair
用于糖尿病伤口修复的工程可注射微孔水凝胶
- 批准号:
10297936 - 财政年份:2021
- 资助金额:
$ 63.04万 - 项目类别:
Engineering Injectable Microporous Hydrogels for Diabetic Wound Repair
用于糖尿病伤口修复的工程可注射微孔水凝胶
- 批准号:
10161123 - 财政年份:2020
- 资助金额:
$ 63.04万 - 项目类别:
VEGF Gradients in Porous Hydrogels for Therapeutic Angiogenesis
用于治疗性血管生成的多孔水凝胶中的 VEGF 梯度
- 批准号:
8992266 - 财政年份:2015
- 资助金额:
$ 63.04万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 63.04万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 63.04万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 63.04万 - 项目类别:
Potent broadly neutralizing antibody development against the HIV-1 fusion peptide epitope
针对 HIV-1 融合肽表位的强效广泛中和抗体的开发
- 批准号:
10838825 - 财政年份:2023
- 资助金额:
$ 63.04万 - 项目类别:
A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
- 批准号:
10698708 - 财政年份:2023
- 资助金额:
$ 63.04万 - 项目类别: