Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
基本信息
- 批准号:10657805
- 负责人:
- 金额:$ 98.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnti-Infective AgentsAnti-Inflammatory AgentsAntibioticsAntifungal AgentsApplications GrantsArtificial ChromosomesArtificial IntelligenceBacterial Artificial ChromosomesBioinformaticsBiological AssayBusinessesCOVID-19 pandemicChemicalsChronic DiseaseCoculture TechniquesCommunicable DiseasesCoupledCrude ExtractsDNADataDedicationsDevelopmentDissectionEconomicsEngineeringEnvironmentFermentationGene ClusterGenetic VariationGenomicsGoalsHigh Pressure Liquid ChromatographyLengthLibrariesMetagenomicsMethodologyMoldsMontanaMulti-Drug ResistanceNatural CompoundNatural ProductsNuclear Magnetic ResonancePathway interactionsPharmaceutical PreparationsPhasePreparationProductionProliferatingPublic HealthPublishingResearchResearch ProposalsScienceServicesSmall Business Innovation Research GrantSourceStructureTechnologyTherapeuticUniversitiesWorkWorkplaceantimicrobialbioinformatics pipelineclinical developmentcostdrug discoverydrug resistant microorganismfightingfungusimprovedin silicoinfectious disease treatmentinnovationmicrobialnext generation sequencingnovelnovel antibiotic classnovel therapeuticspandemic diseasephase 2 studyresearch and developmentsecondary metabolitesocialtoolvectorvirtual
项目摘要
PROJECT SUMMARY. The economic and social burden of the treatment of infectious and
chronic diseases is enormous, >$300B annually. The ongoing COVID-19 pandemic alone will
cost the U.S. economy roughly $8 trillion over the next decade without an effective drug to date.
The emergence of drug resistant microbes, the diminishing supply of novel classes of antibiotics,
and the dramatic reduction in R&D of anti-infective, anti-proliferation and anti-inflammatory
agents have further amplified public health concerns. Fungi are prolific producers of anti-
microbial secondary metabolites (SM) and since the turn of the century have provided 45% of
bioactive molecules from all microbial sources. However, environmental filamentous fungi and
fungal SM biosynthetic gene clusters (BGCs) remain largely untapped due to difficulties in
efficiently handling and expressing these SM BGCs. This research proposal will advance the
science of functional SM metagenomics, and will further advance our newly-developed fungal
artificial chromosome (FAC) technology by integrating Next-Gen Sequencing (NGS), artificial
intelligence (AI), FAC heterologous expression, and direct Nuclear Magnetic Resonance (NMR)
analysis. Our methodologies enable precise capture of full-length SM BGCs from any fungus,
and heterologous expression of large intact silent SM BGCs-containing FAC clones for high
yields of natural products (NPs). Our goals are to improve the prediction of novel BGCs and
their compound production, and to discover novel NPs for clinical development of novel
antibiotics and other drug leads. In proof-concept research, we successfully predicted and
captured the FAC-BGC of novel antibiotic berkeleylactone A and 136 BGCs from two different
fungi by FAC-NGS. Phenomenally, we achieved at least 60% yields of discreet NP compounds
as FAC crude extracts by heterologous expression of 5 of 17 BGC-FACs. We also elucidate the
structures of 15 NP molecules with diverse activities, including TWO novel compounds by direct
NMR analysis of FAC crude extracts, due to the high yield of some compounds. In this Phase II
study, we will further improve our in-house FAC-NGS-AI pipeline to better predict novel fungal
BGCs and their NPs, increasing the compound hit rate to 50~70% with high yield. We will
completely dissect the berkeleylactone BGC and discover novel derivatives of this new antibiotic
of homologous BGCs of other fungi. We will also study twelve fungi (ten fungi with no reference
genomic sequences available) with an estimated 800 BGCs. This technology should improve
fungal SM discovery 100~1000 fold and result in the discovery of at least five novel antibiotics,
and other drug leads from un-studied/un-sequenced fungi of the toxic Berkeley Pit.
项目摘要。治疗传染性和的经济和社会负担
慢性疾病是巨大的,每年> $ 300B。仅在进行的共同19-19大流行就会
迄今为止,未来十年没有有效的药物,美国经济损失了约8万亿美元。
耐药微生物的出现,新型抗生素的供应减少,
以及反感染,抗增殖和抗炎的R&D的急剧减少
代理商进一步扩大了公共卫生问题。真菌是抗抗菌的生产者
自世纪之交以来,微生物次生代谢物(SM)提供了45%
来自所有微生物来源的生物活性分子。但是,环境丝状真菌和
真菌SM生物合成基因簇(BGC)由于困难而在很大程度上尚未开发
有效处理和表达这些SM BGC。这项研究建议将推动
功能性SM元基因组学科学,并将进一步推进我们新开发的真菌
人造染色体(FAC)技术通过整合下一代测序(NGS),人造
智能(AI),FAC异源表达和直接核磁共振(NMR)
分析。我们的方法可以从任何真菌中精确捕获全长SM BGC,
和含有大量无静音SM BGC的FACE克隆的异源表达高
天然产物的产量(NP)。我们的目标是改善新型BGC的预测和
它们的复合生产,并发现新颖的NP用于新颖的临床开发
抗生素和其他药物铅。在证明概念研究中,我们成功预测了
从两个不同的
FAC-NGS真菌。在惊人的情况下,我们至少达到了至少60%的谨慎NP化合物的收率
作为FAC的原油提取物,通过17 BGC-FAC中的5个异源表达。我们还阐明了
具有不同活性的15个NP分子的结构,包括直接的两种新型化合物
由于某些化合物的高产量,对FAC原油提取物的NMR分析。在这个阶段II
研究,我们将进一步改善内部fac-ngs-ai管道,以更好地预测新型真菌
BGC及其NP,以高收益率将复合命中率提高到50〜70%。我们将
完全剖析伯克莱酮BGC并发现这种新抗生素的新颖衍生物
其他真菌的同源BGC。我们还将研究十二种真菌(十种真菌,没有参考
可用的基因组序列),估计为800 bgcs。该技术应该改进
真菌SM发现100〜1000倍,并发现至少五种新型抗生素,
其他药物来自有毒伯克利坑的未经研究/未序列的真菌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengcang Charles Wu其他文献
Chengcang Charles Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengcang Charles Wu', 18)}}的其他基金
A Platform to Identify Antifungal Compounds with Novel Action Mechanisms
鉴定具有新颖作用机制的抗真菌化合物的平台
- 批准号:
10760421 - 财政年份:2023
- 资助金额:
$ 98.27万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 98.27万 - 项目类别:
A robust heterologous expression system of intact fungal secondary metabolite gene clusters for natural product discovery in Aspergillus nidulans
完整真菌次生代谢物基因簇的强大异源表达系统,用于构巢曲霉天然产物的发现
- 批准号:
9120977 - 财政年份:2016
- 资助金额:
$ 98.27万 - 项目类别:
Expanding small molecule functional metagenomics through shuttle BAC expression i
通过穿梭 BAC 表达扩展小分子功能宏基因组
- 批准号:
8123947 - 财政年份:2011
- 资助金额:
$ 98.27万 - 项目类别:
New Strategies for De Novo Sequencing of Daunting Genomes
令人畏惧的基因组从头测序的新策略
- 批准号:
8001158 - 财政年份:2010
- 资助金额:
$ 98.27万 - 项目类别:
Random Shear Shuttle BAC Libraries for Antimicrobial Discovery from Soil Metageno
用于从土壤 Metageno 中发现抗菌剂的随机剪切穿梭 BAC 文库
- 批准号:
7801784 - 财政年份:2010
- 资助金额:
$ 98.27万 - 项目类别:
相似国自然基金
线粒体mRNA甲基化修饰调控神经元线粒体能量代谢的机制研究
- 批准号:32300796
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以22q11.21重复变异的孤独症谱系障碍病人为模型研究THAP7调节血清素代谢的分子机制
- 批准号:32300488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肠道菌群及其代谢产物通过mRNA m6A修饰调控猪肉品质的机制研究
- 批准号:32330098
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 98.27万 - 项目类别:
Role of NadD in Mycobacterium tuberculosis proteostasis
NadD 在结核分枝杆菌蛋白质稳态中的作用
- 批准号:
10194900 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10470751 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10674817 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别: