Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
基本信息
- 批准号:10674817
- 负责人:
- 金额:$ 1.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmidesAnabolismAnti-Infective AgentsAntibiotic ResistanceAntibioticsAntineoplastic AgentsAreaBiochemicalBiological AssayCatalytic DomainCenters for Disease Control and Prevention (U.S.)Cessation of lifeChimeric ProteinsClinicalComplexCyclizationCytochrome P450Deoxy SugarsDevelopmentDirected Molecular EvolutionEconomicsEngineeringEnvironmentEnzymesErythromycinEstersEvaluationFamilyGatekeepingGenerationsGenetic TranscriptionHealthHumanHydroxylationImmunomodulatorsIn VitroIndustryInfectionMacrolidesMediatingMetabolic BiotransformationMethodsMixed Function OxygenasesMolecularMolecular MachinesNatural ProductsNaturePathway interactionsPharmaceutical PreparationsPharmacologic SubstancePositioning AttributeProcessProductionPropertyProteinsRare Earth MetalsReagentResearchResistanceRibosomesSeriesSynthesis ChemistrySystemTestingTherapeuticTylosinVariantWorkWorld Health Organizationanalogappendageaqueouscatalystcostdesignflexibilityglobal healthglycosylationglycosyltransferasehigh throughput screeningimprovedinterestmembermicroorganismmultidisciplinarymutantnovelnovel therapeuticsoxidationpathogenic bacteriapathogenic microbepicromycinpolyketide synthasepolyketidesscaffoldsecondary metabolitesmall moleculesynthetic enzymetherapeutically effectivetranslation assayvirtualwasting
项目摘要
Proposal Summary
The megasynthases that mediate construction of a vast array of natural products represent some of the most
complex molecular machines in Nature. In the Sherman group, polyketide synthases (PKSs) are of interest from
a multi-disciplinary perspective. PKSs are responsible for the biosynthesis of diverse secondary metabolites of
economic and therapeutic importance including antibiotics, anticancer agents and immune-modulators. Antibiotic
resistance is one of the biggest threats of global health according to the World Health Organization (WHO). The
Centers for Disease Control and Prevention (CDC) showed that in the US alone, it causes more than 2 million
infections and 23,000 deaths a year. These alarming numbers are estimated to continue incrementally every
year, with 10 million estimated deaths worldwide in 2050. For these reasons, we are motivated to utilize PKSs
to facilitate the design and generation of novel antibiotics from the macrolides class to improve the development
of new, effective therapeutics.
A diverse subset of PKSs generate macrocyclic ring systems that are essential for macrolide production, include
pathways from the Pikromycin (Pik), Erythromycin (DEBS) and Tylosin (Tyl) producing microorganisms. In this
project, I will be focusing on the use of synthetic approaches to facilitate assembly of these compounds and
their analogs using biocatalysis and enzyme engineering. The synthesis of diverse polyketide chain elongation
intermediates in conjunction with late-stage biosynthetic machinery (e.g. glycosyltransferases, P450
monooxygenases) facilitates efficient access to a repertoire of novel molecules, which are challenging to
generate using synthetic methods alone. PKS enzymes provide a powerful method to selectively catalyze key
transformations on polyketide chains to generate macrolactones, which can be subsequently converted to novel
macrolide antibiotics.
Previous work in the Sherman lab has revealed that the primary hurdle to applying PKS modules for the
production of diverse macrolactones hinges on the selectivity of the Pik thioesterase (TE) domain. These findings
suggested that the TE functions as a gatekeeper in the processing of unnatural substrates to generate novel
macrocycles. In the proposed research, I plan to (1) Design and synthesize unnatural substrates to explore PKS
selectivity and tolerance toward substrate loading, elongation, and cyclization for the generation of odd-
membered ring macrolactones, (2) Pursue a TE directed evolution approach for improved total turnover, and
expansion of substrate scope to generate new macrolactone products, (3) Apply chemoenzymatic synthesis for
diverse macrolides and determine their bioactivity profile against human bacterial pathogens. These efforts will
be crucial to developing new macrolide antibiotics to control and overcome emerging resistance in human
bacterial pathogens and to improve therapeutic parameters in this important class of anti-infective agents.
提案摘要
介导大量天然产品的构造的巨型酶是最多的
自然界中的复杂分子机。在谢尔曼组中,聚酮化合物合酶(PKSS)来自
多学科的观点。 PKS负责多种二级代谢物的生物合成
经济和治疗重要性,包括抗生素,抗癌药和免疫调节剂。抗生素
根据世界卫生组织(WHO)的数据,抵抗是全球健康的最大威胁之一。这
疾病控制与预防中心(CDC)表明,仅在美国,它就会导致超过200万
每年感染和23,000人死亡。这些令人震惊的数字估计会逐步继续
一年,2050年全球估计死亡人数为1000万。由于这些原因,我们有动力利用PKSS
为了促进大环内酯类类的新型抗生素的设计和产生以改善发展
新的,有效的治疗学。
PKSS的各种子集生成大环内酯类生产必不可少的大环环系统,包括
pikromycin(PIK),红霉素(DEB)和泰糖苷(Tyl)产生微生物的途径。在这个
项目,我将重点介绍使用合成方法来促进这些化合物的组装和
它们的类似物使用生物催化和酶工程。多酮链链伸长的合成
中间体与后期生物合成机械(例如糖基转移酶,P450
单加氧酶)有助于有效地获得新分子的曲目,这对
仅使用合成方法生成。 PKS酶提供了一种有力催化钥匙的强大方法
聚酮化合物链的转换以生成大分子,随后可以转换为新颖
大环内酯类抗生素。
谢尔曼实验室的先前工作表明,应用PKS模块的主要障碍
多种大乳酸酯的产生取决于PIK硫酯酶(TE)结构域的选择性。这些发现
建议TE在处理不自然底物的处理中充当守门人以生成新颖的
大环。在拟议的研究中,我计划(1)设计和合成不自然的底物以探索PKS
对产生奇数的选择性和对底物载荷,伸长和环化的耐受性
成员环大管,(2)采用TE定向进化方法,以改善总营业额,并且
底物范围的扩展以生成新的大乳酸酯产品,(3)将化学酶合成应用
各种大环内酯类药物,并确定其针对人类细菌病原体的生物活性特征。这些努力会
对于开发新的大环内酯类抗生素以控制和克服人类的耐药性至关重要
细菌病原体并改善这种重要的抗感染剂中的治疗参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Luisa Adrover-Castellano其他文献
Maria Luisa Adrover-Castellano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Luisa Adrover-Castellano', 18)}}的其他基金
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10470751 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
相似国自然基金
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
- 批准号:82372667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HIF-1α调控心脏LYVE1+常驻巨噬细胞谷氨酰胺代谢促进适应性心脏重塑的作用机制研究
- 批准号:82300447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MYC调控GLS1介导的谷氨酰胺代谢导致三阴乳腺癌多重耐药的机制研究
- 批准号:82303589
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中药米仔兰活性成分楝酰胺通过干预脂肪酸代谢抗胃癌转移作用机制研究
- 批准号:82304777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ALK3通过谷氨酰胺代谢重编程介导甲状腺未分化癌安罗替尼耐药的机制研究
- 批准号:82304521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 1.78万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10311658 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Chemoenzymatic synthesis of macrolactones utilizing PolyketideSynthases (PKSs) for the generation of novel macrolide antibiotics
利用聚酮化合物合成酶 (PKS) 化学酶法合成大环内酯,以生成新型大环内酯抗生素
- 批准号:
10470751 - 财政年份:2021
- 资助金额:
$ 1.78万 - 项目类别:
Examination of the Molecular Properties Underlying the Mechanism, Structure, and Specificity of LanB Enzymes Involved in Lanthipeptide Biosynthesis
检查参与羊毛硫肽生物合成的 LanB 酶的机制、结构和特异性的分子特性
- 批准号:
9050476 - 财政年份:2016
- 资助金额:
$ 1.78万 - 项目类别:
Examination of the Molecular Properties Underlying the Mechanism, Structure, and Specificity of LanB Enzymes Involved in Lanthipeptide Biosynthesis
检查参与羊毛硫肽生物合成的 LanB 酶的机制、结构和特异性的分子特性
- 批准号:
9434992 - 财政年份:2016
- 资助金额:
$ 1.78万 - 项目类别: