Quantitative Diffuse Correlation Spectroscopy for Assessing Human Brain Function
用于评估人脑功能的定量漫相关光谱
基本信息
- 批准号:10754343
- 负责人:
- 金额:$ 38.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-05 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Acute brain injuries can lead to secondary brain damage that worsens the outcome. Reduced cerebral blood
flow can induce ischemia, while excess blood flow can cause hemorrhage. Thus, there is a need for
noninvasive, bedside, continuous cerebral blood flow monitoring approaches at neurointensive care units
(NICUs). Existing technologies for continuous monitoring of cerebral blood flow have critical limitations.
Functional near-infrared spectroscopy has been employed for this clinical need, but it suffers from being not
quantitative and prone to errors due to signals from superficial scalp tissue. Moreover, it measures only limited
information content of oxygen saturation. Additional blood flow contrast can provide a useful biomarker. Diffuse
correlation spectroscopy (DCS) technique is an emerging diffuse optical technique for bedside monitoring of
blood flow in humans. Currently, DCS operates in continuous-wave (CW) mode, which has limitations such as
superficial signal sensitivity and inaccurate quantification of blood flow due to dependency to priori information
of optical parameters. More recent time domain (TD) approach has low signal-to-noise ratio, costly, highly
limited for clinical translation. The goal is to address these limitations by proposing a novel technology and
method that can quantify both absolute static and dynamic parameters concurrently in a single instrument with
fast data acquisition, thus, it is highly suitable for fast functional neuroimaging. It can also separate superficial
and brain signals by discriminating early and late photons via time-gating. Additionally, longer wavelength at
the infrared allows for enhanced depth penetration. It can quantify blood flow and optical parameters in near-
real-time using deep learning, which is highly suitable for NICU settings. The proposed system and method will
completely replace the current state-of-the-art (CW-DCS) and is superior TD approach, because it can provide
higher signal-to-noise ratio (SNR) in the brain, its simplicity and significantly lower cost in instrumentation,
which will lead to fast clinical translation. To achieve our goal, we will construct and optimize the instrument
prototype, characterize the signal, and then we will test the system on phantom models and custom-developed
analytical and Monte Carlo and deep learning models and determine the quantification accuracy with respect
to static and dynamic parameters (Aim-1). We will optimize the system with respect to pulse-width, SNR for
improved quantification accuracy of static and dynamic parameters (Aim-2). Then, we will test the system in
healthy subjects and traumatic brain injury patients (Aim-3). This innovative DCS system and method will
result in quantitative blood flow parameter with enhanced brain sensitivity and will eliminate the roadblocks in
both CW and TD approaches, thereby will pave the way for fast clinical translation at NICU settings and for
general neuroimaging applications.
项目概要/摘要
急性脑损伤可导致继发性脑损伤,从而使结果恶化。脑血减少
血流过多会引起缺血,而血流过多会导致出血。因此,需要
神经重症监护病房的无创床边连续脑血流监测方法
(新生儿重症监护病房)。现有的连续监测脑血流的技术具有严重的局限性。
功能性近红外光谱已被用于满足这一临床需求,但它的缺点是不适用
定量的,并且由于来自浅表头皮组织的信号而容易出错。此外,它只能测量有限的
氧饱和度的信息内容。额外的血流对比可以提供有用的生物标志物。扩散
相关光谱(DCS)技术是一种新兴的漫射光学技术,用于床边监测
人体的血液流动。目前,DCS以连续波(CW)模式运行,该模式存在以下局限性:
由于依赖先验信息,导致信号敏感性肤浅且血流定量不准确
的光学参数。最近的时域 (TD) 方法信噪比低、成本高、
仅限于临床翻译。目标是通过提出一种新技术来解决这些限制
可以在单个仪器中同时量化绝对静态和动态参数的方法
数据采集速度快,因此非常适合快速功能神经成像。它还可以分离表面
以及通过时间选通区分早期和晚期光子的大脑信号。此外,更长的波长
红外线可以增强深度穿透力。它可以量化近处的血流和光学参数
实时使用深度学习,非常适合 NICU 设置。所提出的系统和方法将
完全取代当前最先进的(CW-DCS)并且是优越的TD方法,因为它可以提供
大脑中的信噪比(SNR)更高,其简单性和仪器成本显着降低,
这将导致快速的临床转化。为了实现我们的目标,我们将构建和优化仪器
原型,表征信号,然后我们将在模型模型和定制开发的模型上测试系统
分析、蒙特卡罗和深度学习模型,并确定量化精度
静态和动态参数(Aim-1)。我们将在脉冲宽度、SNR 方面优化系统
提高静态和动态参数的量化精度(Aim-2)。然后,我们将测试系统
健康受试者和创伤性脑损伤患者(Aim-3)。这种创新的 DCS 系统和方法将
产生定量血流参数,增强大脑敏感性,并消除障碍
CW 和 TD 方法,从而将为 NICU 环境中的快速临床转化和
一般神经影像应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulas Sunar其他文献
Ulas Sunar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ulas Sunar', 18)}}的其他基金
Quantitative Fluorescence Imaging-Guided Detection and Targeted Therapy Monitoring Platform for Ovarian Cancer Micrometastases
卵巢癌微转移定量荧光成像引导检测及靶向治疗监测平台
- 批准号:
10754997 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Quantitative Diffuse Correlation Spectroscopy for Assessing Human Brain Function
用于评估人脑功能的定量漫相关光谱
- 批准号:
10265818 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Non-invasive characterization of secondary brain injuries after severe acute brain injury using integrated functional optical imaging and electroencephalography
使用集成功能光学成像和脑电图对严重急性脑损伤后继发性脑损伤进行非侵入性表征
- 批准号:
10064369 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Quantitative Fluorescence Imaging-Guided Detection and Targeted Therapy Monitoring Platform for Ovarian Cancer Micrometastases
卵巢癌微转移定量荧光成像引导检测及靶向治疗监测平台
- 批准号:
10219200 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Non-invasive characterization of secondary brain injuries after severe acute brain injury using integrated functional optical imaging and electroencephalography
使用集成功能光学成像和脑电图对严重急性脑损伤后继发性脑损伤进行非侵入性表征
- 批准号:
10198065 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Quantitative Fluorescence Imaging-Guided Detection and Targeted Therapy Monitoring Platform for Ovarian Cancer Micrometastases
卵巢癌微转移定量荧光成像引导检测及靶向治疗监测平台
- 批准号:
10058694 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Quantitative endoscopic imaging and structured light delivery for controlled drug
用于受控药物的定量内窥镜成像和结构光传输
- 批准号:
8772899 - 财政年份:2014
- 资助金额:
$ 38.78万 - 项目类别:
相似国自然基金
高导热低膨胀过共晶Al-Fe-Ni合金受控扩散凝固组织调控与性能相关性
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
到达过程具有自相关性的排队模型
- 批准号:11901493
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
波浪表面拟分层效应下海气边界层湍流结构和通量输运相关性的研究
- 批准号:91852111
- 批准年份:2018
- 资助金额:100.0 万元
- 项目类别:重大研究计划
MR扩散加权成像(单、双指数模型)参数直方图预测宫颈癌淋巴脉管、嗜神经侵犯及与PD-1/PD-L1相关性的研究
- 批准号:81860302
- 批准年份:2018
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于热力学极值原理和热/动力学相关性的扩散控制型相变的建模与计算
- 批准号:51671075
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Development and evaluation of diffuse correlation spectroscopy to monitor cerebral blood flow and detect intraventricular hemorrhage in extremely premature infants
漫相关光谱监测脑血流和检测极早产儿脑室内出血的开发和评估
- 批准号:
10403869 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Frequency domain diffuse optical spectroscopy and diffuse correlation spectroscopy for assessing inspiratory muscle metabolism in mechanically ventilated patients
频域漫反射光谱和漫相关光谱用于评估机械通气患者的吸气肌代谢
- 批准号:
10482330 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Development and Evaluation of Diffuse Correlation Spectroscopy to Monitor Cerebral Blood Flow and Detect Intraventricular Hemorrhage in Extremely Premature Infants
漫相关光谱监测脑血流和检测极早产儿脑室内出血的开发和评估
- 批准号:
10468687 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Building clinically faithful ex vivo indolent lymphoma models for personalized therapy
建立临床忠实的离体惰性淋巴瘤模型以进行个性化治疗
- 批准号:
10290592 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别:
Building clinically faithful ex vivo indolent lymphoma models for personalized therapy
建立临床忠实的离体惰性淋巴瘤模型以进行个性化治疗
- 批准号:
10470933 - 财政年份:2021
- 资助金额:
$ 38.78万 - 项目类别: