Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
基本信息
- 批准号:10655491
- 负责人:
- 金额:$ 114.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAreaArtificial IntelligenceAwarenessBehavioralBehavioral ResearchBenchmarkingBridge to Artificial IntelligenceClinical DataCommunitiesComprehensionComputersComputing MethodologiesDataData ScienceData SetDevelopmentDimensionsDisciplineDisparity populationDiverse WorkforceEducationEducational ActivitiesEducational BackgroundEducational CurriculumEducational MaterialsEducational process of instructingEnsureEthical IssuesEthicsEvolutionFacultyFamiliarityFeedbackFosteringFoundationsFutureGenerationsGoalsHeterogeneityHispanic-serving InstitutionHistorically Black Colleges and UniversitiesIndividualInfrastructureInterdisciplinary StudyKnowledgeLearningLearning ModuleLibrariesLinkMentorsMentorshipMethodsMinority GroupsMissionNatureOutcomePhysiciansPoliciesRecommendationResearchResearch PersonnelResource DevelopmentResource SharingResourcesScienceScientistSeriesShapesTechniquesTrainingTraining ActivityTraining ProgramsUnderrepresented MinorityVoiceWorkWorkforce Developmentalgorithm developmentartificial intelligence methodbiomedical data sciencebiomedical informaticscareercareer preparationcomplex datadata frameworkdata standardsdata toolsdesigneducation planningeducation resourcesequity, diversity, and inclusionethical, legal, and social implicationexpectationexperienceforginggraduate studenthackathonhealth care deliveryimprovedinsightinterestmeetingsnoveloutreachprogramsskill acquisitionskillssocialsuccesstheoriestooltraining opportunitytraining projecttrustworthinessundergraduate studentunderserved community
项目摘要
SKILLS & WORKFORCE DEVELOPMENT: ABSTRACT (PROJECT DESCRIPTION)
Bridge2AI’s Data Generation Projects (DGPs) will be establishing flagship AI-ready datasets. These will provide
a foundation to establish new opportunities to train individuals in about the use of artificial intelligence (AI) and
data-driven methods. Yet there is increasing recognition that there is not a “one-size-fits-all” approach to training
researchers in this space, given its highly interdisciplinary nature. Some individuals are interested in algorithmic
improvements; others are focused on the sociotechnical implications of AI; still others actively engage with inter-
disciplinary research. The heterogeneity of backgrounds and interests of individuals wanting to gain skills and
knowledge in biomedical/behavioral AI requires a dynamic, thoughtful approach that maximizes the utility of the
DGPs and embraces the diversity of individuals needed to ensure biomedical/behavioral AI benefits everyone.
This Skills & Workforce Development Core (SWDC) is designed to work with the DGP Training Modules and to
facilitate the use of DGP products and providing myriad opportunities and venues for their understanding and
use. To do so, it will be closely integrated with the other BRIDGE Coordination Center (CC) Cores. It will garner
feedback from a broad variety of end users and stakeholders as to how DGP products are perceived and can
be improved. The SWDC’s mission is threefold: 1) developing educational modules and activities around DGP
datasets and tools, illustrating key concepts in contemporary AI, covering both technical concepts and issues
around ethical and trustworthy AI (ETAI, with the Ethics Core); 2) implementing strategies across the DGPs to
provide a dynamic way for different learners to receive a customized curricula that provides the skillset, (practical)
knowledge, and experience that is desired; and 3) tackling the urgent need for more diversity in biomedical data
science through novel engagement programs that leverage the Bridge2AI products, creating opportunities for
mentorship and long-term impact. This mission is realized across two specific aims: 1) to develop curricula,
educational materials, and interactive sessions with the DGPs, thereby addressing skills development; and 2) to
develop training opportunities for a new, diverse, and AI-ready workforce, building infrastructure and relation-
ships to enable workforce development. A series of meetings are planned to understand the DGPs datasets and
tools, from which we can identify common opportunities and set priorities to develop educational modules and
plan activities, including data jamborees and hackathons (in conjunction with the Standards and Tool Optimiza-
tion Cores). Building atop this library of modules and other resources, we plan to create novel methods to tailor
a set of recommended courses for a learner, given their stated educational background, familiarity with AI, and
targeted use of skills. Importantly, all these developments will be informed by our commitment to equity, diversity,
and inclusion (EDI) as we look to meaningfully engage underrepresented minorities and disadvantage individuals
in biomedical data science, ensuring their presences and voices in its future.
技能与劳动力发展:摘要(项目描述)
Bridge2AI的数据生成项目(DGP)将建立旗舰AI-Ready数据集。这些将提供
建立新机会培训个人使用人工智能(AI)和
数据驱动的方法。然而,人们越来越认识到没有一种“千篇一律”的培训方法
鉴于其高度跨学科的性质,该领域的研究人员。有些人对算法感兴趣
改进;其他人则专注于AI的社会技术含义。还有其他人积极参与
纪律研究。想要获得技能和的个人的背景和利益的异质性
关于生物医学/行为AI的知识需要一种动态,周到的方法,以最大程度地提高效用
DGP并包含确保生物医学/行为AI所需的个人的多样性。
此技能与劳动力发展核心(SWDC)旨在与DGP培训模块合作,并
促进DGP产品的使用,并为其理解提供无数的机会和场所
使用。为此,它将与其他桥梁协调中心(CC)核心密切集成。它将加纳
各种各样的最终用户和利益相关者就如何看待DGP产品的反馈
得到改进。 SWDC的任务是三重:1)DGP周围开发教育模块和活动
数据集和工具,说明当代AI中的关键概念,涵盖了技术概念和问题
围绕道德和值得信赖的AI(Etai,伦理核心); 2)在DGP中实施策略
为不同的学习者提供一种动态的方式,以获得提供技能的定制课程,(实用)
所需的知识和经验; 3)迫切需要生物医学数据的多样性
科学通过利用桥接产品的新型参与计划,为
遗传和长期影响。这项任务是在两个具体目标中实现的:1)开发课程,
教育材料和与DGP的互动会议,从而解决技能发展;和2)到
为新的,潜水员和艾滋病毒的劳动力,建立基础设施和关系 - 建立培训机会 -
船以实现劳动力发展。计划一系列会议了解DGP数据集和
工具,我们可以从中确定共同的机会并设定优先级以开发教育模块和
计划活动,包括jambores和黑客马拉松(结合标准和工具优化)
核心)。在这个模块和其他资源库的顶部建立,我们计划创建新颖的方法来量身定制
鉴于他们既定的教育背景,对AI的熟悉程度以及
有针对性的技能。重要的是,所有这些发展都将通过我们对公平,多样性,
和包容(EDI),因为我们希望有意义地参与代表性不足的少数群体和灾难个人
在生物医学数据科学中,确保其未来的存在和声音。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAROL E WATSON其他文献
KAROL E WATSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAROL E WATSON', 18)}}的其他基金
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10473402 - 财政年份:2022
- 资助金额:
$ 114.37万 - 项目类别:
Clinical Center for Look AHEAD: Health in Diabetes
Look AHEAD 临床中心:糖尿病健康
- 批准号:
6796183 - 财政年份:1999
- 资助金额:
$ 114.37万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 114.37万 - 项目类别: