Modulating Protein Activity in Tissue Repair using Engineered Affinity-based Biomaterials
使用基于亲和力的工程生物材料调节组织修复中的蛋白质活性
基本信息
- 批准号:10655635
- 负责人:
- 金额:$ 36.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAreaBindingBiocompatible MaterialsBone InjuryComplexComputer ModelsDevelopmentDirected Molecular EvolutionEngineeringImplantInjuryKnowledgeLibrariesModelingOutcomeProcessProtein EngineeringProtein InhibitionProteinsRegenerative MedicineRoleSignaling ProteinSiteSocietiesSpecificitySurfaceTertiary Protein StructureTestingTissuesWorkYeastsdelivery vehicledesignflexibilityhealingimprovedinjuredinnovationinsightinterestnovelprotein complexreceptorreceptor bindingregenerativeresponsespatiotemporaltissue regenerationtissue repairtoolwound healing
项目摘要
PROJECT SUMMARY
Coordinated protein signaling is required to orchestrate many functions in the body. During tissue repair, the
spatiotemporal presentation of proteins in the injury site affects protein-receptor binding, downstream cellular
responses, and overall healing outcomes. Many biomaterials have been designed to deliver proteins to treat
injured tissues. However, few biomaterials can independently control the delivery of multiple proteins from a
single material, limiting their utility for delivering numerous proteins involved in the natural wound healing
cascade. One strategy to control protein delivery is the use of affinity-based biomaterials, which employ non-
covalent affinity interactions between proteins and materials. My lab is developing affinity-based biomaterials to
enhance tissue repair by determining how the timing and local presentation of complex combinations of proteins
affect regenerative processes. Our objective is to develop new biomaterial tools to understand how protein-
material affinity interactions impact protein release and activity, modulate complex healing responses, and
interrogate the role of protein presentation in tissue repair. We will tackle two critical knowledge gaps that have
hindered the development of effective biomaterials for protein delivery: 1) How do protein-material affinity
interactions affect protein release and activity? 2) How does biomaterial-based control over protein presentation
affect tissue repair? Our innovative approach involves engineering new protein-material affinity interactions using
directed evolution and rational protein design. Yeast surface display will be used to evolve small protein domains
(i.e., affibodies) that bind to proteins of interest with high specificity and a wide range of affinities. Computational
modeling will be used to design affibodies that interact with different areas of the protein to inhibit or maintain
protein-receptor binding. The resulting expansive array of affibodies will allow us to determine how protein-
material affinity interactions affect protein release and activity over different timescales. Affibodies will be
conjugated onto biomaterials to tune protein release and cellular responses. Using our library of affinity-based
biomaterials, we will systematically investigate how the temporal presentation of multiple proteins affects the rate
and quality of tissue repair. We will implant biomaterials to restore key aspects of the healing response by 1)
using moderate affinity affibodies to provide sustained delivery of exogenous proteins to the injury site and 2)
using high affinity affibodies to sequester endogenous proteins within the injury site and enhance, maintain, or
inhibit protein activity. While our approach is flexible and tissue-agnostic, we will first test it in a bone injury model,
which is a central area of expertise in my lab. By replicating the complex protein presentation of the wound
healing cascade, we will gain new insights into the roles of many proteins that govern tissue repair and create a
new class of highly modular biomaterials that can be tailored to orchestrate cellular responses to treat multiple
types of injuries. Our approach will have an immediate benefit to society through the creation of a transformative
new regenerative medicine strategy with the potential to significantly improve tissue repair.
项目摘要
需要协调的蛋白质信号传导来编排体内许多功能。在组织修复期间,
损伤部位蛋白质的时空表现会影响蛋白质受体结合,下游细胞
反应和整体治愈结果。许多生物材料旨在输送蛋白质以治疗
受伤的组织。但是,很少有生物材料可以独立控制多种蛋白质的递送
单一材料,限制了其效用以传递与自然伤口愈合有关的众多蛋白质
级联。控制蛋白质递送的一种策略是使用基于亲和力的生物材料,这些生物材料采用非 -
蛋白质与材料之间的共价亲和力相互作用。我的实验室正在开发基于亲和力的生物材料
通过确定蛋白质复杂组合的定时和局部表现如何增强组织修复
影响再生过程。我们的目标是开发新的生物材料工具,以了解蛋白质如何
材料亲和力相互作用会影响蛋白质释放和活性,调节复杂的愈合反应,并
询问蛋白质表现在组织修复中的作用。我们将解决两个重要的知识差距
阻碍了有效的生物材料的蛋白质递送的开发:1)蛋白质材料亲和力如何
相互作用会影响蛋白质释放和活性? 2)如何基于生物材料对蛋白质表现的控制
影响组织修复?我们的创新方法涉及工程新的蛋白质材料亲和力相互作用
定向进化和理性蛋白质设计。酵母表面展示将用于发展小蛋白质结构域
(即,具有高特异性和广泛亲和力与感兴趣的蛋白质结合的affibodies)。计算
建模将用于设计与蛋白质不同区域相互作用以抑制或维持
蛋白质受体结合。由此产生的膨胀阶层将使我们能够确定蛋白质如何
物质亲和力相互作用会影响蛋白质释放和不同时间尺度的活性。会产生
结合到生物材料上以调整蛋白质释放和细胞反应。使用我们的基于亲和力的图书馆
生物材料,我们将系统地研究多种蛋白质的时间表现如何影响速率
和组织修复的质量。我们将植入生物材料,以将愈合反应的关键方面恢复1)
使用中等亲和力的亲和力提供持续递送外源蛋白到损伤部位的递送和2)
使用高亲和力的亲和力在伤害部位隔离内源性蛋白质并增强,维持或
抑制蛋白活性。虽然我们的方法是灵活的和组织不可或缺的,但我们将首先在骨损伤模型中对其进行测试,但是
这是我实验室中专业知识的中心领域。通过复制伤口的复杂蛋白质表现
治愈级联
新的高度模块化生物材料,可以量身定制以编排细胞反应以治疗多重
伤害类型。我们的方法将通过创造变革性对社会产生直接的好处
新的再生医学策略有可能显着改善组织修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marian Hirushika Hettiaratchi其他文献
Marian Hirushika Hettiaratchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marian Hirushika Hettiaratchi', 18)}}的其他基金
A Directed Evolution Approach to Affinity-Based Protein Delivery
基于亲和力的蛋白质递送的定向进化方法
- 批准号:
10640270 - 财政年份:2021
- 资助金额:
$ 36.88万 - 项目类别:
A Directed Evolution Approach to Affinity-Based Protein Delivery
基于亲和力的蛋白质递送的定向进化方法
- 批准号:
10474539 - 财政年份:2021
- 资助金额:
$ 36.88万 - 项目类别:
A Directed Evolution Approach to Affinity-Based Protein Delivery
基于亲和力的蛋白质递送的定向进化方法
- 批准号:
10287446 - 财政年份:2021
- 资助金额:
$ 36.88万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Investigating Biomolecular Condensates and Heat Shock Proteins in Cellular Responses to Sublethal Heat Shock and Fever
研究细胞对亚致死热休克和发烧反应中的生物分子缩合物和热休克蛋白
- 批准号:
10679768 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Innovative therapeutic strategies to support elimination of river blindness
支持消除河盲症的创新治疗策略
- 批准号:
10754120 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 36.88万 - 项目类别: