Investigating Biomolecular Condensates and Heat Shock Proteins in Cellular Responses to Sublethal Heat Shock and Fever
研究细胞对亚致死热休克和发烧反应中的生物分子缩合物和热休克蛋白
基本信息
- 批准号:10679768
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAnimalsAreaBehaviorBindingBiochemicalBiological ModelsBiologyCell LineCellsCellular biologyCessation of lifeCircadian RhythmsCollaborationsComplementCyanobacteriumDiseaseEnvironmentEukaryotaEventFeverGenerationsGenetic TranscriptionGrowthHealthHeat StrokeHeat shock proteinsHeat-Shock ResponseHomeostasisHumanHuman BiologyHuman Cell LineHyperthermiaImmuneImmune systemInfectionInflammatory ResponseInvestigationIon ChannelKnowledgeLifeMammalian CellMass Spectrum AnalysisMethodsMicroscopicMicroscopyMolecularMolecular ChaperonesPhysical condensationPhysiologicalPhysiologyPositioning AttributeProteinsRNARepressionSedimentation processStimulusStressTemperatureTestingTissuesTitrationsTranslatingWorkYeastscell typeclimate changeexhaustionexperienceextreme heatfeedingmigrationmisfolded proteinmolecular scalemortalityprotein aggregationprotein expressionprotein foldingresponsesensorsex determinationsingle moleculestemtraffickingtranscription factortranscriptome sequencingwarm temperature
项目摘要
Project Summary
Environmental temperature dictates biology. Animals use their thermal environments to guide their
migration, circadian rhythms, growth, feeding, and sex determination: essential behaviors now threatened by
changing climates. Warming temperatures likewise challenge human health. About 1 in 100 deaths globally stem
from heat-related causes, and such mortality is rising. Beyond lethal heatstroke, more mild heat affects human
health in far more common and pervasive ways. Heat <40°C alters and dysregulates human physiology down to
the cellular level, particularly in immune cells. Such sublethal heat shocks occur in hyperthermia and heat illness,
as well as frequently in fever: a systemic heat shock which regulates the immune system during infection. Yet
even in the well-known context of fever, we lack understanding of how human cells sense sublethal heat shock.
The cell biology of extreme heat shock >40°C is well-characterized, but far less is understood about
sublethal, fever-range temperatures <40°C. However, we do know that certain immune cells upregulate heat
shock protein expression in response to fever. The induction of heat shock proteins, or the heat shock response,
occurs in eukaryotes when heat activates transcription factor Hsf1, via titration of its repressor (heat shock protein
Hsp70) away from Hsf1. This titration is caused by the generation of new, heat shock-induced substrates for
Hsp70 to bind. These substrates, i.e. the upstream sensors of heat, are unidentified in sublethal heat shock.
We hypothesize biomolecular condensates are these substrates which help cells sense sublethal heat
shock. Condensation, or reorganization of proteins and RNA into larger foci, occurs in response to environmental
stimuli across species from yeast to humans. Our group showed recently that heat-induced condensates are
Hsp70 substrates in yeast. We hypothesize that sublethal heat shock-induced condensates are Hsp70
substrates in humans, enabling cells to sense and respond to such fever-range temperatures. It is not known
what proteins condense in human cells at these temperatures, nor if such condensates might be Hsp70
substrates. Moreover, in any species, we lack molecular-scale understanding of how condensates and Hsp70
interact. We are poised to unlock exactly this knowledge using a complement of biochemical, microscopic, and
molecular-level approaches. First, we will uncover protein condensation in human cell lines at fever-range
temperature, using the established sedimentation-mass spectrometry method of our group. Second, we will
observe directly how condensates and Hsp70 interact at the molecular scale, using single-molecule microscopy.
Together, these aims will help us elucidate fundamentally how cells sense and respond to sublethal heat shock.
项目概要
环境温度决定了动物的生物学行为。
迁徙、昼夜节律、生长、进食和性别决定:基本行为现在受到威胁
气候变化同样对人类健康构成挑战。全球约有百分之一的死亡是由气候变化引起的。
由于与高温相关的原因,这种死亡率正在上升,除了致命的中暑之外,更温和的高温也会影响人类。
低于 40°C 的高温会以更常见和普遍的方式改变人体生理学并使其失调。
细胞水平,特别是在免疫细胞中,这种亚致死的热休克发生在高热和热病中,
以及经常发烧:感染期间调节免疫系统的全身热休克。
即使在众所周知的发烧背景下,我们也缺乏对人体细胞如何感知亚致死热休克的了解。
>40°C 的极端热休克的细胞生物学已被充分表征,但人们对其了解甚少
亚致死、发烧范围温度<40°C 然而,我们确实知道某些免疫细胞会上调热量。
响应发烧的休克蛋白表达 热休克蛋白的诱导,或热休克反应,
当热量通过滴定其阻遏物(热休克蛋白)激活转录因子 Hsf1 时,真核生物中就会发生这种情况
Hsp70) 远离 Hsf1,这种滴定是由新的、热激诱导的底物的生成引起的。
这些底物,即热的上游传感器,在亚致死热休克中尚未被识别。
我们捕获的生物分子凝聚物是这些帮助细胞感知亚致死热量的底物
蛋白质和 RNA 凝结或重组为更大的焦点,是对环境的反应。
我们的小组最近表明,热诱导的冷凝物是跨物种的刺激。
我们捕获了酵母中的 Hsp70 底物,亚致死热休克诱导的冷凝物是 Hsp70。
人类体内的底物,使细胞能够感知并响应这种发烧范围的温度,目前尚不清楚。
在这些温度下,人体细胞中会凝结什么蛋白质,或者此类凝结物是否可能是 Hsp70
此外,在任何物种中,我们都缺乏对缩合物和 Hsp70 如何形成分子尺度的了解。
我们准备利用生化、微观和化学的补充来准确地解锁这些知识。
首先,我们将揭示人类细胞系在发烧范围内的蛋白质凝聚。
温度,使用我们组已建立的沉降质谱法。
使用单分子显微镜直接观察缩合物和 Hsp70 如何在分子尺度上相互作用。
总之,这些目标将帮助我们从根本上阐明细胞如何感知和响应亚致死热休克。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Matthew Lin其他文献
Kyle Matthew Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
The role of SH2B3 in regulating CD8 T cells in Type 1 Diabetes
SH2B3 在 1 型糖尿病中调节 CD8 T 细胞的作用
- 批准号:
10574346 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Defining the molecular impact of 16p11.2 deletion on reward response in striatal dopamine receptor D1-expressing neurons
定义 16p11.2 缺失对纹状体多巴胺受体 D1 表达神经元奖赏反应的分子影响
- 批准号:
10750328 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: