Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
基本信息
- 批准号:10655833
- 负责人:
- 金额:$ 64.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmericanBiological MarkersBiophysicsBrainBrain imagingBrain regionChronicClinicalClinical ManagementComputer SimulationComputer softwareDataDevelopmentDrug resistanceElectrodesElectroencephalographyElectrophysiology (science)EpilepsyFormulationGoalsHealthcare SystemsImageImaging technologyImplanted ElectrodesInterventionIntractable EpilepsyMachine LearningMagnetoencephalographyModelingMonitorNeural Network SimulationNon-linear ModelsOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPerformancePersonsPharmaceutical PreparationsProceduresResearchScalp structureSeizuresSourceTechniquesTechnologyTimeTissuesTrainingbiophysical propertiesclinical practicecomputerized toolsdeep neural networkdensityepileptiformimaging approachimaging capabilitiesimplantationimprovedinfection riskinnovationneuralneural networknew technologynovelopen sourcespatiotemporalsurgery outcometechnological innovationtool
项目摘要
Project Summary
The goal of this project is to develop and validate a novel electrophysiological source imaging (ESI) approach
based on biophysically constrained deep neural networks (BioDNN), to significantly improve surgical planning in
drug resistant focal epilepsy patients. Epilepsy affects about 70 million people worldwide. For approximately 33%
of the 3.4 million Americans with epilepsy, seizures are not controlled by medications alone. Epilepsy surgery is
the most viable option for curing drug resistant focal epilepsy, only if seizure sources can be accurately localized
and safely removed. There is a clinical need to innovate technological tools for better surgical planning of focal
epilepsy. We propose in this project a novel ESI technology based on biophysically constrained deep neural
network (BioDNN) to provide accurate, robust, and objective spatio-temporal estimates of the underlying
epileptogenic zone (EZ). Of innovation is that the trained neural network, is capable of imaging brain sources
without the need to tune the model’s hyper-parameters by an operator for every new instance of data, thus
making the technique objective and easy-to-use in clinical settings. Our specific aims are: Aim 1. Establishing
and Validating the BioDNN for Imaging Epileptogenic Tissue from EEG Inter-ictal Epileptiform Discharges (IEDs)
of Focal Epilepsy Patients. We will establish, optimize and validate the proposed BioDNN for imaging EZ from
IEDs in EEG in 200 focal drug resistant epilepsy (DRE) patients, in comparison to clinical “ground truth". Aim 2.
Developing and Validating the BioDNN Model for Imaging Epileptogenic Tissue from MEG Inter-ictal Epileptiform
Discharges of Focal Epilepsy Patients. We will develop and optimize the BioDNN model for imaging EZ from
MEG IEDs and validate the MEG-BioDNN model and compare with the EEG-BioDNN model in 80 focal DRE
patients in comparison to clinical “ground truth. Aim 3. Developing and Validating the BioDNN Model for Imaging
Epileptogenic Tissue from Ictal EEG of Focal Epilepsy Patients. We will develop the BioDNN for imaging the
SOZ from scalp ictal EEG and validate it from high density ictal EEG recordings in 120 focal DRE patients, in
comparison to clinical “ground truth”. The successful completion of the proposed research will establish a novel
machine learning technology to non-invasively localize and image underlying epileptogenic tissue from interictal
and ictal electrophysiological biomarkers. The establishment of such a novel technology promises to significantly
improve the precision of intracranial EEG electrodes implantation and aid surgical planning, leading to significant
improvement in surgical outcomes, and benefiting numerous drug resistant epilepsy patients.
1
项目概要
该项目的目标是开发和验证一种新型电生理源成像 (ESI) 方法
基于生物物理约束的深度神经网络(BioDNN),显着改善手术计划
耐药性局灶性癫痫患者约占全球 7000 万人的 33%。
在 340 万患有癫痫症的美国人中,仅靠药物治疗无法控制癫痫发作。
只有能够准确定位癫痫发作源,才是治疗耐药性局灶性癫痫的最可行选择
并安全地切除,临床需要创新技术工具以更好地进行病灶手术规划。
我们在这个项目中提出了一种基于生物物理约束的深层神经的新型 ESI 技术。
网络(BioDNN)提供准确、稳健和客观的底层时空估计
癫痫发生区(EZ)的创新之处在于经过训练的神经网络能够对脑源进行成像。
无需操作员为每个新数据实例调整模型的超参数,因此
使该技术在临床环境中客观且易于使用,我们的具体目标是: 目标 1. 建立。
验证 BioDNN 对 EEG 发作间期癫痫样放电 (IED) 中的致癫痫组织进行成像
我们将建立、优化和验证拟议的用于 EZ 成像的 BioDNN。
200 名局灶性耐药性癫痫 (DRE) 患者脑电图中的 IED 与临床“基本事实”目标 2 进行比较。
开发和验证用于对发作间期癫痫样 MEG 致癫痫组织进行成像的 BioDNN 模型
我们将开发和优化用于 EZ 成像的 BioDNN 模型。
MEG IED 并验证 MEG-BioDNN 模型,并与 80 个焦点 DRE 中的 EEG-BioDNN 模型进行比较
目标 3. 开发和验证用于成像的 BioDNN 模型。
来自局灶性癫痫患者发作期脑电图的致癫痫组织我们将开发用于成像的 BioDNN。
来自头皮发作期脑电图的 SOZ 并通过 120 名局灶性 DRE 患者的高密度发作期脑电图记录对其进行验证,
与临床“真实情况”的比较 拟议研究的成功完成将建立一种新颖的方法。
机器学习技术可对发作间期的致癫痫组织进行非侵入性定位和成像
这种新技术的建立有望显着提高治疗效果。
提高颅内脑电图电极植入的精度并辅助手术计划,从而产生显着的效果
改善手术效果,造福众多耐药性癫痫患者。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BIN HE其他文献
BIN HE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BIN HE', 18)}}的其他基金
Electrophysiology-Compatible Wearable Transcranial Focused Ultrasound Neuromodulation Array Probes
电生理学兼容的可穿戴经颅聚焦超声神经调制阵列探头
- 批准号:
10616201 - 财政年份:2023
- 资助金额:
$ 64.4万 - 项目类别:
Characterization of in vivo neuronal and inter-neuronal responses to transcranial focused ultrasound
体内神经元和神经元间对经颅聚焦超声反应的表征
- 批准号:
10337754 - 财政年份:2021
- 资助金额:
$ 64.4万 - 项目类别:
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 64.4万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 64.4万 - 项目类别:
Early life exposure to metal mixtures: impacts on asthma and lungdevelopment
生命早期接触金属混合物:对哮喘和肺部发育的影响
- 批准号:
10678307 - 财政年份:2023
- 资助金额:
$ 64.4万 - 项目类别:
Concurrent Aerobic Exercise and Cognitive Training to Prevent Alzheimer's in at-risk Older Adults
同时进行有氧运动和认知训练可预防高危老年人的阿尔茨海默病
- 批准号:
10696409 - 财政年份:2023
- 资助金额:
$ 64.4万 - 项目类别:
Intensive postpartum antihypertensive treatment to improve women's cardiovascular health
产后强化抗高血压治疗可改善女性心血管健康
- 批准号:
10664483 - 财政年份:2023
- 资助金额:
$ 64.4万 - 项目类别: