Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
基本信息
- 批准号:10654634
- 负责人:
- 金额:$ 35.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-17 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAwardBathingBiosensorCalciumCalcium ChannelCell LineCell physiologyCellsChronicChronic diarrheaColonConstipationConsumptionDataDiagnosisDyspepsiaElectric StimulationElectrophysiology (science)EnteralEnteroendocrine CellEpitheliumEsthesiaGastrointestinal DiseasesGastrointestinal MotilityGastrointestinal PhysiologyGastrointestinal tract structureGene Expression ProfileGenerationsGoalsHealthHealthcareHumanImageIn VitroIntestinesIon ChannelIrritable Bowel SyndromeKnock-outKnockout MiceKnowledgeKnowledge acquisitionLaboratoriesLeadLightLimb structureLinkMechanical StimulationMechanicsMethodsMolecularMusNeuroepithelialOrganOrganoidsOutcomePathway interactionsPatientsPhysiologicalPhysiologyPiezo 2 ion channelPopulationPositioning AttributeRegulationReporterRoleRyanodine Receptor Calcium Release ChannelSensorySerotoninSignal TransductionSignaling MoleculeSmooth MuscleSymptomsT-Type Calcium ChannelsTestingTissuesTransgenic MiceUnited States National Institutes of HealthVisceralWorkafferent nervecell motilitycost estimateexperimental studygastrointestinalgastrointestinal epitheliumgastrointestinal functionglucagon-like peptide 1in vivoinnovationmechanical forcemechanotransductionmouse modelnew therapeutic targetnovelnovel diagnosticsoptogeneticsproductivity losspublic health relevancereceptorresponseselective expressionsensorvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Functional gastrointestinal diseases (FGIDs), like irritable bowel syndrome, affect ~15% of the US population.
Disruptions in the sensation of forces, also known as mechanosensation, are frequent in patients with FGIDs.
Therefore, my laboratory’s long-term goal is to elucidate the cellular and molecular mechanisms of
gastrointestinal (GI) mechanosensitivity in health and FGIDs. There are several mechanosensory pathways in
the GI tract. One important mechanosensory pathway involved in FGIDs is neuro-epithelial, which is composed
of a specialized sensory epithelial enteroendocrine cells (EECs) and intrinsic or extrinsic afferent neurons. We
discovered a sub-population EECs which are mechanosensitive and express a mechanosensitive ion channel,
Piezo2. In these mechanosensitive EECs, force-driven activation of Piezo2 channels is necessary for
generation of “receptor currents” that lead to intracellular Ca2+ increases, the release of signaling molecules
and downstream physiologic effects, like epithelial secretion. Thus, Piezo2 EECs appear to be important
epithelial mechanosensors, but knowledge gaps limit our ability to target them. The overall objective of this
proposal is to determine Piezo2 EECs roles in GI physiology by testing a novel hypothesis that
mechanosensitive Piezo2 EECs use a Ca2+ signaling cascade to link Piezo2 activation with release of 5-
HT and/or GLP-1 and thereby regulate GI motility and secretion. We will test the hypothesis in 3 Specific
Aims. In Aim 1, we will determine the precise mechanotransduction mechanism that connects a very rapid
Piezo2 receptor current with prolonged intracellular Ca2+ increase that is necessary for the release of signaling
molecules. In Aim 2, we will determine Piezo2 EEC sub-populations based on GI region and the signaling
molecules they contain and release. In Aim 3, we will determine how mechanosensitive Piezo2 EECs regulate
mechanically induced GI secretion and contractions. We established novel transgenic mouse models that allow
us to lineage track, stimulate, and interrogate specific EEC sub-populations. We will use these mouse models
and validated EEC lines in a range of innovative and established approaches from single cells to in vivo to
determine mechanosensitive EEC functions and their roles in GI physiology. The experiments are
foundationally linked to previous work but represent a new and exciting direction and can we can complete in
the defined award period. The results from these studies are poised to provide significant advances in the
understanding of basic cellular and molecular mechanotransduction mechanisms, sensory epithelial function,
GI mechanobiology, and have a broad translational value in physiology. A deep understanding of EEC
mechanotransduction positions us well to determine alterations in mechanosensitive EECs in FGIDs, so that
we may target them as novel and specific therapies.
项目摘要/摘要
肠易激综合征等功能性胃肠道疾病(FGID)影响了约15%的美国人群。
FGID患者经常在力的感觉中的干扰(也称为机械)。
因此,我的实验室的长期目标是阐明细胞和分子机制
胃肠道(GI)在健康和FGID中的机理敏感性。有几种机械学途径
胃肠道。 fGID中涉及的一种重要的机理感官途径是神经上皮,该途径是组成的
专门的感觉上皮肠肠细胞(EEC)以及内在或外在传入神经元。我们
发现了一个机械的子群EEC,并表达机械离子通道,
压电2。在这些机械敏感的EEC中,对压电2通道的力驱动激活对于
导致细胞内Ca2+增加的“受体电流”的产生,信号分子的释放
和下游生理效应,例如上皮分泌。那就是Piezo2 EEC似乎很重要
上皮机制,但是知识差距限制了我们针对它们的能力。总体目标
建议是通过检验一个新的假设来确定gi生理中的压电EEC在GI生理中的作用。
机械敏感的Piezo2 EEC使用Ca2+信号传导级联反应将Piezo2激活与释放5-
HT和/或GLP-1,从而调节GI运动和分泌。我们将在3个特定的特定中检验该假设
目标。在AIM 1中,我们将确定连接非常快速的确切机制
释放信号传导所必需的延长细胞内Ca2+增加的压电2受体电流
分子。在AIM 2中,我们将根据GI区域和信号确定Piezo2 EEC子群
它们包含并释放的分子。在AIM 3中,我们将确定机械敏感的Piezo2 EEC如何调节
机械诱导的胃肠道分泌和收缩。我们建立了新型的转基因小鼠模型,允许
我们要轨道轨道,刺激和审问特定的EEC子群。我们将使用这些鼠标模型
并在从单个细胞到体内到体内的一系列创新和已建立的方法中验证了EEC线
确定机械EEC功能及其在GI生理中的作用。实验是
与以前的工作相关,但代表了一个新的令人兴奋的方向,我们可以完成
定义的奖励期。这些研究的结果被毒死,以在
了解基本的细胞和分子机制转导机制,感觉上皮功能,
GI机理生物学,并且在生理学方面具有广泛的翻译价值。对EEC的深刻理解
机械转导的定位很好地确定FGID中的机械敏感EEC的改变,以便
我们可以将它们定为新颖和特定的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Beyder其他文献
Arthur Beyder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Beyder', 18)}}的其他基金
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10019542 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10206133 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10443589 - 财政年份:2019
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
9317486 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
8948535 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的力转导机制
- 批准号:
9111900 - 财政年份:2015
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
10624924 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
9905495 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
10452931 - 财政年份:1997
- 资助金额:
$ 35.78万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Sickle cell disease gut dysbiosis effects on CNS pain processing
镰状细胞病肠道菌群失调对中枢神经系统疼痛处理的影响
- 批准号:
10747045 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Bringing the clinic to the lab: the effects of forced and non-forced rehabilitation on functional recovery after spinal cord injury
将临床带入实验室:强制和非强制康复对脊髓损伤后功能恢复的影响
- 批准号:
10641259 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Understanding the Role of the Integrated Stress Response in tRNA Synthetase-associated Charcot-Marie-Tooth Disease
了解综合应激反应在 tRNA 合成酶相关夏科-马里-图思病中的作用
- 批准号:
10740335 - 财政年份:2023
- 资助金额:
$ 35.78万 - 项目类别:
Deciphering the Link between Severe Acute Respiratory Coronavirus 2 Infection and Long-Term Neurological and Pulmonary Sequelae
解读严重急性呼吸道冠状病毒2感染与长期神经和肺部后遗症之间的联系
- 批准号:
10555082 - 财政年份:2022
- 资助金额:
$ 35.78万 - 项目类别: