Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
基本信息
- 批准号:10452931
- 负责人:
- 金额:$ 54.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelBathingBiological AssayCell physiologyCellsCellular biologyChronicClinicalComplexConstipationDataDiagnosisDiseaseDrug TargetingDrug usageElectrophysiology (science)Enterochromaffin CellsFunctional Gastrointestinal DisordersFunctional disorderGastrointestinal DiseasesGastrointestinal MotilityGastrointestinal PhysiologyGastrointestinal tract structureGene Expression ProfileGenetic TranscriptionGoalsGrantHealthHealth Care CostsHeartHumanImageImmuneInfectionInflammationIntegral Membrane ProteinInterstitial Cell of CajalIntestinesIon ChannelIonsKnowledgeLarge IntestineMechanical StimulationMechanical StressMechanicsMolecularMolecular TargetMorbidity - disease rateMovementMusMuscleMuscle functionNeurogliaNeuronsObstructionOutcomePatientsPermeabilityPopulationProcessQuality of lifeReflex actionRegulationResearchRoleSmall IntestinesSmooth MuscleSmooth Muscle MyocytesStretchingStructureSturnus vulgarisTechniquesTestingTherapeuticTimeTissuesTomatoesVascular Smooth MuscleVascular SystemVisceralVisceral Myopathiesbiophysical propertiescell motilitycell typediagnostic strategyexperienceexperimental studygastrointestinalgastrointestinal functiongastrointestinal systemimaging approachin vivoinnovationknock-downmechanical forcemechanical stimulusmechanotransductionmotility disordernew therapeutic targetnovelnovel diagnosticsproductivity lossresponsesensortranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Coordinated gastrointestinal (GI) tract motility is fundamental for normal GI tract function. Several cell types
combine to regulate GI motility, with the smooth muscle cell (SMC) as the workhorse required to provide the
physical power for contractions. Disruptions in SMC function contribute to common GI disorders, may occur after
infections and inflammation, and associate with rare but devastating GI motility disorders like visceral myopathies
and pseudo-obstruction. The gut wall is a highly complex multilayered structure under mechanical stress at
baseline and constantly moving. Therefore, cells in the GI tract experience a range of types and amounts of
mechanical stimuli. The normal coordinated motility requires an ability to sense and adjust to forces. In multiple
cycles of this grant, we have dissected mechanisms of smooth muscle mechanotransduction, have made
discoveries that advanced GI physiology and pathophysiology, and provided novel drug targets. However, our
current understanding of SMC mechanosensing remains incomplete. It is established that SMCs, even as single
cells, adjust their contractions in response to force in a process called the myogenic reflex. In vascular SMCs,
the myogenic reflex depends on mechanogated ion channels, but in the GI tract, cellular and molecular
mechanisms remain poorly understood. Therefore, the overall objective of our research is to determine the
primary mechanogated ion channels involved in GI SMC mechanosensitivity. For this proposal, we created novel
animal models and used cutting-edge techniques to generate compelling preliminary data. Our preliminary
studies show that a recently discovered mechanogated ion channel Tmem63a is expressed in a subpopulation
of SMCs, which are optimized for force sensing and distributed across the tissue to detect force. Indeed
mechanosensitive ionic currents in a population of primary mouse GI SMCs have unique biophysical properties
consistent with Tmem63a, the activation of which by force leads to a Ca2+ increase, modulating small and large
bowel contractions and whole gut transit time. Interestingly, our data also show that patients with slow transit
constipation have a decrease in Tmem63a. Thus, the central hypothesis that a mechanogated ion channel
Tmem63a significantly contributes to the myogenic reflex will be tested in two Aims. In Aim 1, we determine
Tmem63a function, its response to force, and its role in GI SMCs using conventional and cutting-edge techniques
electrophysiology and Ca2+ imaging approaches. In Aim 2, we propose experiments to define the Tmem63a+
SMC population and to determine the role of Tmem63a SMCs in regulating GI smooth muscle function. Since
Tmem63a is found in a subpopulation of SMCs, we use single-cell and spatial transcriptomics, novel Ca2+
imaging, smooth muscle contractility assays and in vivo whole gut transit. Successful completion of the proposed
innovative experiments has both basic significance and clinical impact, evaluating and establishing a novel SMC
mechanogated ion channel which contributes to SMC function and the myogenic reflex and, in the long term,
may provide a novel target for functional and motility GI disorders.
项目摘要/摘要
协调的胃肠道(GI)道运动对于正常的胃肠道功能至关重要。几种细胞类型
结合使用平滑肌细胞(SMC)作为提供的主力
宫缩的物理力量。 SMC功能的中断会导致常见的GI疾病,可能会发生
感染和炎症,并与罕见但毁灭性的胃肠道疾病(如内脏肌病)相关
和伪obstruction。肠壁是在机械应力下的高度复杂的多层结构
基线并不断移动。因此,胃肠道中的细胞经历了一系列类型和数量
机械刺激。正常的协调运动需要感知和适应力的能力。在多个
这笔赠款的循环,我们已经解剖了平滑肌机械转移的机制,已使
发现了提高GI生理学和病理生理学的发现,并提供了新的药物靶标。但是,我们的
当前对SMC机械感应的理解仍然不完整。已经确定SMC,即使是单身
细胞,在称为肌原性反射的过程中调整其收缩以响应力。在血管SMC中,
肌原性反射取决于机械的离子通道,但在gi段,细胞和分子中
机制仍然很少理解。因此,我们研究的总体目标是确定
涉及GI SMC机械敏感的主要机械化离子通道。对于这个建议,我们创作了小说
动物模型和使用尖端技术来生成引人注目的初步数据。我们的初步
研究表明,最近发现的机械离子通道TMEM63A在亚群中表达
SMC的作用,用于优化用于力传感并在整个组织中分布以检测力。的确
原代小鼠胃肠道中的机械敏感离子电流具有独特的生物物理特性
与TMEM63A一致,其激活通过力导致Ca2+增加,调节大小
肠收缩和整个肠道运输时间。有趣的是,我们的数据还表明过境缓慢的患者
便秘的TMEM63A降低。因此,机械离子通道的中心假设
TMEM63A显着促进肌源性反射,以两个目标进行测试。在AIM 1中,我们确定
TMEM63A功能,其对力的响应及其在GI SMC中的作用,使用常规和尖端技术
电生理学和CA2+成像方法。在AIM 2中,我们提出了定义TMEM63A+的实验
SMC种群并确定TMEM63A SMC在调节GI平滑肌功能中的作用。自从
在SMC的亚群中发现了TMEM63A,我们使用单细胞和空间转录组学,新型Ca2+
成像,平滑的肌肉收缩力测定和整个肠道过境。成功完成拟议的
创新的实验既具有基本意义和临床影响,又评估和建立了新的SMC
有助于SMC功能和肌源反射的机械化离子通道,从长远来看
可能为功能性和运动性GI疾病提供新的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Beyder其他文献
Arthur Beyder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Beyder', 18)}}的其他基金
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10019542 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10206133 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10443589 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in gastrointestinal physiology
胃肠生理学中的机械传导
- 批准号:
10654634 - 财政年份:2019
- 资助金额:
$ 54.94万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
9317486 - 财政年份:2015
- 资助金额:
$ 54.94万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的机械转导机制
- 批准号:
8948535 - 财政年份:2015
- 资助金额:
$ 54.94万 - 项目类别:
Mechanisms of mechanotransduction in the enterochromaffin cells
肠嗜铬细胞中的力转导机制
- 批准号:
9111900 - 财政年份:2015
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
10624924 - 财政年份:1997
- 资助金额:
$ 54.94万 - 项目类别:
Mechanotransduction in Intestinal Smooth Muscle Cells
肠平滑肌细胞的力转导
- 批准号:
9905495 - 财政年份:1997
- 资助金额:
$ 54.94万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 54.94万 - 项目类别:
The Effect of Sodium (Na+) on Kidney B cells in Lupus Nephritis
钠 (Na ) 对狼疮性肾炎肾 B 细胞的影响
- 批准号:
10816774 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:
The Effect of Sodium (Na+) on Kidney B cells in Lupus Nephritis
钠 (Na ) 对狼疮性肾炎肾 B 细胞的影响
- 批准号:
10684098 - 财政年份:2022
- 资助金额:
$ 54.94万 - 项目类别:
Defining the role of compartment-specific dopamine dynamics in reinforcement learning
定义隔室特异性多巴胺动力学在强化学习中的作用
- 批准号:
10458064 - 财政年份:2020
- 资助金额:
$ 54.94万 - 项目类别:
Toward wearable ultrasonic neurostimulation for daily at-home treatment of urinary urge incontinence
用于日常家庭治疗急迫性尿失禁的可穿戴超声神经刺激
- 批准号:
10363621 - 财政年份:2020
- 资助金额:
$ 54.94万 - 项目类别: