Using functional readouts from engineering models of innervated skeletal muscle to assess the efficacy of CRISPR-based c9orf72 ALS gene therapies

使用受神经支配的骨骼肌工程模型的功能读数来评估基于 CRISPR 的 c9orf72 ALS 基因疗法的功效

基本信息

  • 批准号:
    10653223
  • 负责人:
  • 金额:
    $ 8.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Gene therapies employing CRISPR-Cas9-mediated genetic editing techniques have the potential to cure a wide range of inheritable disorders, including amyotrophic lateral sclerosis (ALS). However, identifying edits capable of neutralizing disease-causing mutations is a pressing issue. A critical bottleneck in the translation of novel gene therapies to clinical trials is a lack of human models capable of producing functional metrics that correlate with patient outcomes and provide predictive data with which to guide subsequent in vivo experiments. For ALS and other neuromuscular disorders, the complexity associated with generating mature and functionally competent neuromuscular junctions (NMJs) in culture with sufficient throughput for screening purposes is a major hindrance to this effort. The development of a multiplexed platform capable of promoting NMJ development across a parallel array of engineered muscle tissues will have a substantial positive impact on advanced therapy development, drug efficacy/toxicity screening, and mechanistic studies of neuronal and NMJ pathophysiology in ALS. Building on the PI’s work as a KL2 scholar, this project seeks to combine optogenetic motor neurons derived from ALS patient induced pluripotent stem cells (iPSCs) with a magnet-based sensing platform for non-invasively detecting engineered muscle contractions to establish a system for real-time, continuous assessment of NMJ functional decline in ALS (Aim 1). Tests with cholinergic synaptic agonists and antagonists, in terms of their ability to alter synaptic communication between cultured muscle and neurons, will be used to demonstrate the suitability of this model for assaying changes in NMJ function in vitro. Once optimized, the described system will be used to investigate multiple gene editing strategies for restoring function in C9orf72-mutant ALS; the most common inheritable form of the disorder (Aim 2). ALS patient iPSC-derived motor neurons subjected to either bi-allelic repeat excision or allele-specific C9orf72 gene inactivation will be compared for their ability to maintain NMJ function over time in co-culture with engineered muscle tissues. The non-invasive nature of our magnetic sensing system enables continuous assessment of muscle performance in response to optogenetically-controlled neuronal activation, thereby enabling longitudinal study of therapeutic efficacy and parallel assessment of multiple tissues subjected to different treatment regimens. Results from these experiments will provide a framework for further preclinical validation of novel therapies targeting peripheral neuropathic diseases as well as data to aid in the selection of which gene editing technique has the best chance of success in C9orf72 ALS patients. Validation of the technologies outlined in this proposal will represent the culmination of work started by the PI as part of the KL2 program and will form the core of the PI’s independent research going forward. Results collected from this R03 funded program will provide valuable preliminary data for the continued development of the PI’s research program and will be central to the success of subsequent federal grant applications.
项目概要/摘要 采用 CRISPR-Cas9 介导的基因编辑技术的基因疗法有可能治愈多种疾病 一系列遗传性疾病,包括肌萎缩侧索硬化症(ALS),但是,识别编辑能力。 中和致病突变是新基因翻译中的一个关键瓶颈。 临床试验的疗法缺乏能够产生与相关的功能指标的人体模型 患者结果并提供指导后续体内实验的预测数据。 其他神经肌肉疾病,与产生成熟和功能能力相关的复杂性 培养物中的神经肌肉接头(NMJ)具有足够的通量用于筛选目的是一个主要障碍 为了这一努力,开发一个能够促进 NMJ 并行发展的多路复用平台。 一系列工程肌肉组织将对先进疗法的开发产生重大积极影响, ALS 的药物疗效/毒性筛选以及神经元和 NMJ 病理生理学的机制研究。 在 PI 作为 KL2 学者的工作中,该项目旨在将源自 ALS 的光遗传学运动神经元结合起来 使用基于磁体的传感平台进行非侵入性检测的患者诱导多能干细胞 (iPSC) 设计肌肉收缩以建立实时、连续评估 NMJ 功能的系统 ALS 下降(目标 1)测试胆碱能突触激动剂和拮抗剂的改变能力。 培养的肌肉和神经元之间的突触通讯将用于证明这种方法的适用性 体外检测 NMJ 功能变化的模型一旦优化,所描述的系统将用于 研究多种基因编辑策略来恢复最常见的 C9orf72 突变 ALS 的功能; 该疾病的遗传形式(目标 2)。 ALS 患者 iPSC 衍生的运动神经元受到双等位基因的影响。 将比较重复切除或等位基因特异性 C9orf72 基因失活维持 NMJ 的能力 随着时间的推移,与工程肌肉组织共培养,我们的磁传感的非侵入性特性。 系统能够根据光遗传学控制来连续评估肌肉性能 神经激活,从而能够纵向研究治疗效果并并行评估 多个组织接受不同的治疗方案,这些实验的结果将提供一个结果。 进一步验证针对周围神经疾病的新疗法的临床前框架 作为数据来帮助选择哪种基因编辑技术在 C9orf72 ALS 中最有可能成功 该提案中概述的技术的验证将代表由患者开始的工作的高潮。 该 PI 作为 KL2 计划的一部分,并将成为 PI 未来独立研究的核心。 从这个 R03 资助的计划中收集的数据将为继续发展提供有价值的初步数据 PI 的研究计划,对于后续联邦拨款申请的成功至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alec Simon Tulloch Smith其他文献

Alec Simon Tulloch Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alec Simon Tulloch Smith', 18)}}的其他基金

A stem cell-based model of the human muscle spindle for studying proprioceptive dysfunction in distal arthrogryposis syndromes
基于干细胞的人体肌梭模型,用于研究远端关节挛缩综合征的本体感觉功能障碍
  • 批准号:
    10664301
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
High-throughput nanoMEA-based Proarrhythmia Assay
基于 nanoMEA 的高通量致心律失常检测
  • 批准号:
    9046607
  • 财政年份:
    2016
  • 资助金额:
    $ 8.83万
  • 项目类别:

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
  • 批准号:
    52308532
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
  • 批准号:
    82303925
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
  • 批准号:
    82373112
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
  • 批准号:
    82372435
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Antibody Core
抗体核心
  • 批准号:
    10549477
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
  • 批准号:
    10643624
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
  • 批准号:
    10820331
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
  • 批准号:
    10777065
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
Perspectives of Correctional Officers about Older Adults in Prison: A Grounded Theory Study
惩教人员对监狱中老年人的看法:扎根理论研究
  • 批准号:
    10749275
  • 财政年份:
    2023
  • 资助金额:
    $ 8.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了