Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
基本信息
- 批准号:10645223
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3 year oldActinsActomyosinAffectAffinityAutophagocytosisBiomechanicsBiopsyBioreactorsCalcineurinCalcineurin inhibitorCalciumCalpainCardiacCardiac MyocytesCardiac MyosinsComplexComputer ModelsCoupledDevelopmentDiastoleDisinhibitionEventExtracellular MatrixFamilial Hypertrophic CardiomyopathyFiberFibroblastsFoundationsFutureGenerationsGenesGeneticHeart DiseasesHeart HypertrophyHeart failureHeterozygoteHumanHyperactivityHypertrophic CardiomyopathyHypertrophyImpairmentIndividualInheritedInterventionInvestigationLasersLeftLeft Ventricular HypertrophyLengthLysosomesMechanicsMediatingMicrofilamentsMolecularMuscleMuscle ContractionMutationMyocardial dysfunctionMyocardiumMyosin ATPaseMyosin Heavy ChainsNonsense CodonNuclearObstructionPPP3CA geneParentsPathologicPathway interactionsPatientsPeptide HydrolasesPersonsPhenotypePhysiologicalPoint MutationProductionProtein IsoformsProteinsRelaxationRepressionRodentRoleSarcomeresSignal TransductionSkinSomatic CellStem Cell FactorStressStretchingSystemSystoleT-Cell ActivationTestingTissuesUbiquitinVentricularbeta-Myosincardiac tissue engineeringdesigndisease phenotypeheart functionhuman diseaseimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinnovationinsightmalemechanical propertiesmechanical stimulusmechanotransductionmouse modelmulticatalytic endopeptidase complexmuscle LIM proteinmutantnovelnovel strategiesnovel therapeuticsnuclear factors of activated T-cellspharmacologicpreventprobandprotein degradationrecruitresponsescaffoldsudden cardiac deathtransmission process
项目摘要
Familial hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease and is typically caused
by mutations in genes encoding sarcomeric proteins that regulate cardiac contractility. HCM manifestations include
left ventricular hypertrophy and heart failure, arrythmias, and sudden cardiac death. The mechanotransduction
mechanism by which dysregulated sarcomeric force production is sensed and leads to pathological remodeling
remains poorly understood in HCM, thereby inhibiting the efficient development of new therapeutics. Our discovery
was based on insights from a severe phenotype of an individual with HCM and a second genetic alteration in a
sarcomeric mechano-sensing protein. We effectively derived cardiomyocytes from patient-specific induced
pluripotent stem cells (iPSC-CMs) and developed robust engineered heart tissues (EHTs) by seeding iPSC-CMs into
a laser-cut scaffold possessing native cardiac fiber alignment, for studying human cardiac mechanobiology at both
cellular and tissue levels. Coupled with computational modeling for muscle contraction and rescue of disease
phenotype via gene editing and pharmacological interventions, we have identified a new mechanotransduction
pathway in HCM. Enhanced actomyosin crossbridge formation caused by sarcomeric mutations in cardiac myosin
heavy chain (MYH7) led to increased force generation, which when coupled with slower twitch relaxation,
destabilized the muscle LIM protein (MLP) stretch-sensing complex at the Z-disc. Subsequent reduction in the
sarcomeric MLP level caused disinhibition of calcineurin–nuclear factor of activated T-cells (NFAT) signaling,
which promoted cardiac hypertrophy. By mitigating enhanced actomyosin crossbridge formation through either
genetic or pharmacological means, we alleviated stress at the Z-disc, preventing the development of hypertrophy
associated with sarcomeric mutations. This proposal will dissect the roles of systolic and diastolic Z-disc stress
in modulating the MLP mechanosensory complex and elucidate the molecular mechanisms that mediate the
repression of calcineurin/NFAT by MLP as well as MLP protein degradation by stretch-sensing. We have recently
developed a new bioreactor that can expose EHTs to precisely prescribed afterloads, so we can test the
hypothesis that higher systolic forces produced by crossbridges under higher afterloads destabilize MLP at the
Z-disc and activate hypertrophic signaling during systole. Additionally, EHTs will be subjected to culture under
conditions of either constant length or diastolic stretch to mimic ventricular filling. After repeated stretching, EHTs
will be examined for hypertrophic signaling. We will unravel mechanistic insights into how saromeric MLP is
degraded in response to Z-disc stress. In addition, we will dissect molecular mechanisms by which MLP inhibits
calcineurin/NFAT hypertrophic responses in systole and diastole. Elucidation of the molecular mechanisms of a
common sarcomeric contraction/MLP/calcineurin mechanotransduction pathway will help to design novel
strategies for a wide spectrum of heart failure patients potentially through stabilizing the Z-disk MLP mechanosensory
complex.
家族性肥厚心肌病(HCM)是最常见的遗传性心脏病,通常是引起的
通过编码调节心脏收缩率的肉瘤蛋白的基因突变。 HCM表现包括
左心室肥大和心力衰竭,芳香症和心脏猝死。机械转导
感测失调的肌肉力产生并导致病理重塑的机制
在HCM中仍然了解不足,从而抑制了新疗法的有效发展。我们的发现
是基于来自患有HCM的个体的严重表型的见解和A中的第二个遗传改变
肉瘤机械感应蛋白。我们从患者特异性诱导的有效衍生的心肌细胞衍生
多能干细胞(IPSC-CM),并通过将IPSC-CM播种到
激光切割脚手架潜在的本地心脏纤维比对,用于研究两者的人类心脏机制
细胞和组织水平。结合用于肌肉收缩和疾病营救的计算建模
通过基因编辑和药物干预措施表型,我们已经确定了一种新的机械转移
HCM中的途径。由心脏肌球蛋白中的肉瘤突变引起的肌动菌素十字桥形成
重链(MYH7)导致力增加,当较慢的抽搐放松时,
在Z盘处不稳定肌肉lim蛋白(MLP)拉伸感应复合物。随后减少
肉瘤MLP水平引起激活T细胞(NFAT)信号的钙调神经磷酸酶 - 核因子的抑制作用,
促进心脏肥大。通过减轻增强的肌动菌素Crossbridge形成
遗传或药理学手段,我们减轻了Z二轴的压力,阻止了肥大的发展
与肉型突变有关。该建议将剖析收缩和舒张期应力的作用
在调节MLP机理时复合物并阐明介导的分子机制
通过拉伸感应抑制MLP和MLP蛋白质降解的抑制。我们最近有
开发了一种新的生物反应器,可以将EHT暴露于精确规定的后载,因此我们可以测试
假设Crossbridges在较高的后负荷下产生的较高的收缩力使MLP处于
Z二轴并激活收缩期肥厚的信号传导。此外,EHT将受到培养
恒定长度或舒张期为模拟心室填充的条件。重复拉伸后,EHTS
将检查肥厚的信号传导。我们将揭示机械洞察讽刺MLP的洞察力
响应于Z二盘应激而退化。另外,我们将剖析MLP抑制的分子机制
钙调神经蛋白/NFAT在收缩和舒张中的肥大反应。阐明A的分子机制
常见的肉瘤收缩/MLP/钙调神经蛋白机械转导途径将有助于设计新颖
通过稳定Z-DISK MLP机制,广泛心力衰竭患者的策略有可能
复杂的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yibing Qyang其他文献
Yibing Qyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yibing Qyang', 18)}}的其他基金
Modulation of heart function by Muscle LIM protein-mediated mechanotransduction
肌肉 LIM 蛋白介导的机械转导调节心脏功能
- 批准号:
10503955 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10457467 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10685550 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Development of HLA engineered universal vascular grafts from human iPSCs
利用人类 iPSC 开发 HLA 工程通用血管移植物
- 批准号:
10298018 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10841794 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10622873 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10414459 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10636647 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10439796 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Readily Available Stem Cell-Based Vascular Grafts for Emergent Surgical Care
用于紧急手术护理的现成干细胞血管移植物
- 批准号:
10189694 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
- 批准号:
10741224 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
In utero rescue of cleft palate using maternal administration of folic acid
使用叶酸在子宫内挽救腭裂
- 批准号:
10646021 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别: