How do you build an astrocyte?
如何构建星形胶质细胞?
基本信息
- 批准号:10646059
- 负责人:
- 金额:$ 23.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAnimal BehaviorAnimalsArchitectureAstrocytesBehaviorBiologyBrainBrain DiseasesBrain NeoplasmsCellsCellular MorphologyCellular StructuresChildhoodCollectionCommunicationComplexDevelopmentDiseaseDrosophila genusEducational process of instructingEquilibriumExhibitsFoundationsGenesGeneticGenetic ScreeningGenetic studyGlioblastomaGoalsGrowthHumanIndividualInfiltrationIonsLabelLightMaintenanceMalignant NeoplasmsMammalsMetabolicModelingMolecularMolecular GeneticsMorphogenesisMorphologyMusMutagenesisNatureNervous SystemNeurogliaNeuronsNeuropilNeurotransmittersOrganellesOrganismPathway interactionsPhenotypePlayPositioning AttributeProcessProliferatingPropertyRapid screeningResearchResolutionRoleShapesSignal PathwaySignal TransductionSignaling MoleculeStructureSynapsesSystemTechnologyWorkbiomarker validationbrain healthcell growthcell typeflyforward geneticsgenetic analysisgenetic approachhuman diseaseimaging modalityin vivoinsightmodel organismmutantneural circuitneurotransmitter reuptakenovelprogramsscreeningsingle cell analysissynaptogenesistool
项目摘要
Project Summary
Astrocytes are crucial regulators of brain development and function. Astrocytes acquire a remarkably complex morphology
that allows them to associate with each other, other cell types (e.g. the vasculature) and synapses where they regulate
synaptogenesis, neurotransmitter reuptake, metabolic support, ion balance, and ultimately animal behavior. While it is
believed that the elaborate morphology of astrocytes is absolutely essential for efficient astrocyte function, how astrocytes
acquire this unusually complex architecture remains poorly defined. This is surprising in light of their crucial roles in neural
circuit formation and function, and the fact that disruption of astrocyte growth control results in the most intractable and
deadly human brain tumor, glioblastoma.
How do astrocytes acquire their remarkably morphology, and how do they organize their subcellular architecture
to enable their diverse functions? We will attempt to answer these central questions using Drosophila astrocytes as a model.
Fly astrocytes are remarkably similar to their mammalian counterparts by morphological, developmental, molecular, and
functional criteria, and Drosophila offers a battery of powerful molecular-genetic tools with which to explore fundamental
questions in astrocyte biology that are not available in other organisms. We will begin by comprehensively characterizing
the cell-wide organellar landscape of astrocytes by examining the distribution of ~30 genetically encodable markers that
label cellular organelles (Aim 1). This will allow us to define, with single-cell precision, the basic organellar architecture
of astrocytes. This will be an essential first step toward understanding how their intricate morphology is arranged
ultrastructurally and how it may dictate, or be regulate by, their functions. These cellular landmarks will also enable a
rigorous analysis of mutants that affect astrocyte morphology. In Aim 2, we will perform the first unbiased forward genetic
screen for astrocyte growth control pathways. We have established a unique genetic screening platform for this purpose in
Drosophila based on MARCM technology, which allows for rapid screening with single-cell resolution for mutants that
alter a variety of phenotypes including cell morphology (growth, tiling, association with synapses), changes in proliferation,
or other changes in astrocyte properties. In preliminary work we have optimized our screening system, along with imaging
methods to maximally facilitate our work. This is part of a long term effort to understand how astrocytes are built in vivo.
Defining how astrocytes control their cell growth, infiltration, and tiling will be critical for us to gain a better understanding
how astrocytes affect brain health and disease. Since this will be the first forward genetic screen for astrocyte growth control
pathways, a wealth of exciting mutants await discovery. We will focus our subsequent efforts on pathways conserved in
mammalian astrocytes, and given the strong conservation of the developmental and functional properties in flies and
mammals, we expect our work will identify a number of new high-priority pathways for understanding astrocyte
morphogenesis in mammals.
项目摘要
星形胶质细胞是大脑发育和功能的关键调节因子。星形胶质细胞获得了非常复杂的形态
这使他们可以彼此关联,其他细胞类型(例如脉管系统)和突触调节的突触
突触发生,神经递质再摄取,代谢支持,离子平衡以及最终动物行为。虽然是
认为星形胶质细胞的精细形态对于有效的星形胶质细胞功能,星形胶质细胞的方式绝对必要
获得这种异常复杂的建筑的定义仍然很差。鉴于它们在神经中的关键作用,这是令人惊讶的
电路的形成和功能以及星形胶质细胞生长控制的破坏导致最棘手和最棘手的事实
致命的人脑肿瘤,胶质母细胞瘤。
星形胶质细胞如何获得它们的形态明显,以及它们如何组织亚细胞体系结构
启用其多样化的功能?我们将尝试使用果蝇星形胶质细胞作为模型来回答这些中心问题。
苍蝇星形胶质细胞与形态,发育,分子和
功能标准和果蝇提供了一系列强大的分子遗传工具,可以探索基本
在其他生物体中不可用的星形胶质细胞生物学问题。我们将首先全面描述
通过检查约30个遗传编码标记的星形胶质细胞的细胞层景观
标签细胞器(AIM 1)。这将使我们能够用单细胞精度定义基本的细胞器体系结构
星形胶质细胞。这将是了解如何安排其复杂形态的重要第一步
超微结构及其如何决定或通过其功能来调节其功能。这些蜂窝地标也将使
严格分析影响星形胶质形态的突变体。在AIM 2中,我们将执行第一个公正的前进遗传
星形胶质细胞生长控制途径的屏幕。我们为此目的建立了一个独特的基因筛选平台
基于MARCM技术的果蝇,该技术允许对突变体的单细胞分辨率进行快速筛选
改变各种表型,包括细胞形态(生长,平铺,与突触的关联),增殖变化,
或星形胶质细胞性质的其他变化。在初步工作中,我们优化了我们的筛选系统以及成像
最大程度地促进我们的工作的方法。这是了解体内星形胶质细胞如何建立的长期努力的一部分。
定义星形胶质细胞如何控制其细胞的生长,浸润和平铺对于我们获得更好的理解至关重要
星形胶质细胞如何影响大脑健康和疾病。由于这将是星形胶质细胞生长控制的第一个正向遗传筛选
途径,大量令人兴奋的突变体等待着发现。我们将将随后的努力集中在保存的道路上
哺乳动物的星形胶质细胞,并在苍蝇和
哺乳动物,我们希望我们的工作将确定许多新的高优先级途径来理解星形胶质细胞
哺乳动物的形态发生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc R Freeman其他文献
Marc R Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc R Freeman', 18)}}的其他基金
2023 Glial Biology: Functional Interactions Among Glia and Neurons Gordon Research Conference and Gordon Research Seminar
2023年胶质细胞生物学:胶质细胞和神经元之间的功能相互作用戈登研究会议和戈登研究研讨会
- 批准号:
10609354 - 财政年份:2022
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10645162 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10454296 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Molecular pathways regulating astrocyte morphogenesis and function
调节星形胶质细胞形态发生和功能的分子途径
- 批准号:
10316938 - 财政年份:2021
- 资助金额:
$ 23.1万 - 项目类别:
Characterizing new genes that govern mitochondrial function in the axon
表征控制轴突线粒体功能的新基因
- 批准号:
9272960 - 财政年份:2016
- 资助金额:
$ 23.1万 - 项目类别:
Characterizing new genes that govern mitochondrial function in the axon
表征控制轴突线粒体功能的新基因
- 批准号:
9168491 - 财政年份:2016
- 资助金额:
$ 23.1万 - 项目类别:
相似国自然基金
底栖动物摄食对沉积物中砷地球化学行为的影响-“As-Fe-S”角度下的作用机理
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
社会性蜘蛛胫毛穹蛛(Stegodyphus tibialis)个性对合作行为适应性的影响
- 批准号:31901084
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
早期触觉经验剥夺对成年后动物行为的影响
- 批准号:31970940
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
雌激素调节成年雄性斑胸草雀前脑核团电生理活动和突触可塑性对鸣唱行为的影响研究
- 批准号:31860605
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多肽纳米凝胶支架引导二甲胺四环素定向活化的小胶质细胞植入对损伤脊髓神经元和轴突影响的动物实验研究
- 批准号:31872310
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
The impact of early life opioid exposure on the molecular and functional trajectories of septal cell types
生命早期阿片类药物暴露对隔膜细胞类型分子和功能轨迹的影响
- 批准号:
10775154 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
- 批准号:
10725450 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Evaluating the Effects of Animal Therapy on Anxiety in Pediatric Dental Patients
评估动物疗法对小儿牙科患者焦虑的影响
- 批准号:
10649010 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别:
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:
10680972 - 财政年份:2023
- 资助金额:
$ 23.1万 - 项目类别: