Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
基本信息
- 批准号:10471193
- 负责人:
- 金额:$ 18.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Admission activityAdoptionAlgorithmsAngiographyArchitectureAreaArterial InjuryAwardBlunt TraumaCaliberCathetersCause of DeathClinicalCommunitiesComparative Effectiveness ResearchComputer ModelsComputer Vision SystemsComputer softwareCrush InjuryDataData ScienceData SetDerivation procedureDetectionDevelopmentDiagnosisEarly InterventionEngineeringEnvironmentExtravasationFundingGoalsHematomaHemorrhageHospitalizationHumanImageIndustryInterventionIntuitionK-Series Research Career ProgramsKnowledgeLabelLeadLearningLifeLogistic RegressionsMachine LearningManualsMarylandMeasurementMeasuresMedical ImagingMentorsMethodsModelingModernizationNatureObesityOutcomePatientsPelvisPredictive ValueProbability TheoryProcessProgramming LanguagesPythonsRadiology SpecialtyResearchResearch ActivityResearch PersonnelResourcesRiskScanningSensitivity and SpecificityShorthandSpeedSupervisionTechniquesTerminologyTestingTherapeutic EmbolizationThinnessTimeTrainingTransfusionTranslationsTraumaTreatment outcomeTriageUniversitiesVehicle crashWorkX-Ray Computed Tomographyadverse outcomealgorithm developmentartificial neural networkautomated segmentationbaseclinical decision-makingcomputer infrastructureconvolutional neural networkcostdeep learningdeep learning algorithmexperiencefall injuryhemodynamicsheuristicsimage processingimaging Segmentationimprovedimproved outcomelearning strategymachine learning modelmedical schoolsmortalitymultidisciplinarymuscle formneural network architectureoutcome predictionpelvis fracturepersonalized predictionspredictive modelingpreventprimary outcomeradiologistrandom forestreal time modelrisk predictionsecondary outcomesegmentation algorithmskillsstandard of caresupport vector machinetemporal measurementtool
项目摘要
PROJECT SUMMARY/ABSTRACT: Arterial hemorrhage after pelvic fractures is a leading reversible cause of
death after blunt trauma. Prediction of arterial bleeding risk is difficult, and currently determined using
subjective criteria, often based on qualitative results of admission computed tomography (CT). Segmented
hematoma and contrast extravasation (CE) volumes predict need for angioembolization, major transfusion, and
mortality but cannot be applied in real-time. The ill-defined multi-focal nature of pelvic hematomas and CE
prevents reliable estimation using diameter-based measurements. Dr. Dreizin is a trauma radiologist at the
University of Maryland School of Medicine. His early work has focused on improving the speed and reliability of
volumetric analysis of pelvic hematomas using semi-automated techniques, and derivation of a logistic
regression-based prediction tool for major arterial injury after pelvic fractures. Dr. Dreizin’s goal for this four-
year K08 mentored career development award proposal is to gain the skills needed to 1) implement deep
learning architectures for automated hematoma volume segmentation and 2) develop computational models
for outcome prediction after pelvic trauma. These tools could greatly improve the speed and accuracy of
clinical decision making in the setting of life-threatening traumatic pelvic bleeding. Fully convolutional neural
networks (FCNs) have emerged as the most robust and scalable method for automated medical image
segmentation. Intuitive software platforms for training FCN implementations and generating multivariable
machine learning models have been developed in the Python programming environment. The training
objectives and research activities of this proposal are necessary to provide Dr. Dreizin with new skills and
practical experience in Python programming, deep learning software, and computational modeling software. By
understanding the principles and computational infrastructure behind modern machine learning, Dr. Dreizin will
be able to train and validate state-of-the-art algorithms independently and effectively lead a team of
researchers in this area. To achieve his goals, Dr. Dreizin has assembled a multidisciplinary team of mentors,
advisors, and collaborators with world-leading expertise in computer vision in medical imaging, probability
theory, data science, and comparative effectiveness research. Dr. Dreizin will focus on two specific aims. In
Aim 1, he will train and validate deep learning architectures for segmentation of traumatic pelvic hematomas
and CE by computing the Dice metric, time effort, and correlation with clinical outcomes. In Aim 2, he will
generate and test quantitative models for predicting major arterial bleeding after pelvic trauma based on a rich
multi-label dataset of segmented features. The training and pilot data will be necessary for Dr. Dreizin’s long-
term goal of research independence and R01 support to develop automated segmentation algorithms for the
spectrum of clinically important imaging features after pelvic trauma, as well as fully automated multivariable
clinical prediction tools with potential for translation to industry and as an FDA-cleared product.
项目摘要/摘要:骨盆骨折后动脉出血是导致骨盆骨折的主要可逆性原因
预测动脉出血风险很困难,目前使用以下方法确定。
标准,通常基于入院分段计算机断层扫描 (CT) 的定性主观结果。
血肿和造影剂外渗 (CE) 量预测需要血管栓塞、大输血和
盆腔血肿和 CE 的多灶性性质不明确,但无法实时应用。
Dreizin 博士是一名创伤放射科医生,无法使用基于直径的测量进行可靠的估计。
他早期的工作重点是提高马里兰大学医学院的速度和可靠性。
使用半自动技术对盆腔血肿进行体积分析,并推导逻辑回归
Dreizin 博士的目标是基于回归的骨盆骨折后主要动脉损伤预测工具。
K08 年指导职业发展奖提案旨在获得 1) 深入实施所需的技能
自动血肿体积分割的学习架构和 2) 开发计算模型
这些工具可以大大提高骨盆创伤后的结果预测的速度和准确性。
在危及生命的创伤性盆腔出血的情况下进行临床决策全卷积神经。
网络(FCN)已成为自动化医学图像最强大且可扩展的方法
用于训练 FCN 实现和生成多变量的直观软件平台。
机器学习模型是在Python编程环境中开发的。
该提案的目标和研究活动对于为 Dreizin 博士提供新技能和
Python 编程、深度学习软件和计算建模软件的实践经验。
了解现代机器学习背后的原理和计算基础设施,Dreizin 博士将
能够独立地训练和验证最先进的算法,并有效地领导一个团队
为了实现他的目标,Dreizin 博士组建了一个多学科的导师团队,
在医学成像、概率等计算机视觉领域拥有世界领先专业知识的顾问和合作者
Dreizin 博士将重点关注两个具体目标。
目标 1,他将训练和验证用于分割创伤性盆腔血肿的深度学习架构
在目标 2 中,他将通过计算 Dice 指标、时间投入以及与临床结果的相关性来进行 CE。
基于丰富的数据生成并测试预测骨盆创伤后主要动脉出血的定量模型
分段特征的多标签数据集对于 Dreizin 博士的长期研究来说是必要的。
研究独立性和 R01 支持的长期目标是开发自动分割算法
盆腔创伤后临床重要的影像学特征谱,以及全自动多变量
临床预测工具有可能转化为行业并作为 FDA 批准的产品。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
External Attention Assisted Multi-Phase Splenic Vascular Injury Segmentation With Limited Data.
- DOI:10.1109/tmi.2021.3139637
- 发表时间:2022-06
- 期刊:
- 影响因子:10.6
- 作者:
- 通讯作者:
CT of Sacral Fractures: Classification Systems and Management.
- DOI:10.1148/rg.220075
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Accelerating voxelwise annotation of cross-sectional imaging through AI collaborative labeling with quality assurance and bias mitigation.
通过 AI 协作标记加速横截面成像的体素注释,并提供质量保证和偏差缓解。
- DOI:10.3389/fradi.2023.1202412
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dreizin,David;Zhang,Lei;Sarkar,Nathan;Bodanapally,UttamK;Li,Guang;Hu,Jiazhen;Chen,Haomin;Khedr,Mustafa;Khetan,Udit;Campbell,Peter;Unberath,Mathias
- 通讯作者:Unberath,Mathias
Pulmonary contusion: automated deep learning-based quantitative visualization.
- DOI:10.1007/s10140-023-02149-2
- 发表时间:2023-08
- 期刊:
- 影响因子:2.2
- 作者:Sarkar, Nathan;Zhang, Lei;Campbell, Peter;Liang, Yuanyuan;Li, Guang;Khedr, Mustafa;Khetan, Udit;Dreizin, David
- 通讯作者:Dreizin, David
Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.
- DOI:10.1097/ta.0000000000002566
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Dreizin D;Zhou Y;Chen T;Li G;Yuille AL;McLenithan A;Morrison JJ
- 通讯作者:Morrison JJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dreizin其他文献
David Dreizin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dreizin', 18)}}的其他基金
Human-centered CT-based CADx Tools for Traumatic Torso Hemorrhage
以人为中心、基于 CT 的 CADx 工具,用于治疗躯干外伤出血
- 批准号:
10566836 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Machine learning-based segmentation and risk modeling for real-time prediction of major arterial bleeding after pelvic fractures
基于机器学习的分割和风险建模,用于实时预测骨盆骨折后大动脉出血
- 批准号:
10189581 - 财政年份:2019
- 资助金额:
$ 18.62万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 18.62万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10429829 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
Momitor: Wearable Technology for Early Detection of Postpartum Hemorrhage
Momitor:用于早期发现产后出血的可穿戴技术
- 批准号:
10483278 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10612933 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别:
A novel enteral feeding system for the earlier and safer delivery of enteral nutrition through continuous monitoring of tip location
一种新型肠内喂养系统,通过持续监测尖端位置,可以更早、更安全地输送肠内营养
- 批准号:
10689817 - 财政年份:2022
- 资助金额:
$ 18.62万 - 项目类别: