Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
基本信息
- 批准号:10470746
- 负责人:
- 金额:$ 73.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Respiratory Distress SyndromeAffectAnimalsApoptosisAreaAvian Influenza A VirusBacterial PneumoniaBindingBiochemistryBiological AssayBirdsCell DeathCell Death Signaling ProcessCellsCessation of lifeChronicClinicalClinical TrialsComplexCrystallizationDataDiseaseDistalDrug KineticsEpithelialGoalsHospitalizationHumanIn VitroInfectionInflammationInflammatoryInfluenza A Virus, H1N1 SubtypeInfluenza A Virus, H5N1 SubtypeInfluenza A virusInjuryLaboratoriesLeadLungLung diseasesLytic VirusMediatingMediator of activation proteinModelingMolecular ConformationMolecular TargetMorbidity - disease rateMusMutationNecrosisPathogenicityPathologyPathway interactionsPharmaceutical ChemistryPhosphotransferasesPneumococcal PneumoniaPneumoniaPre-Clinical ModelProteinsPulmonary InflammationPyrimidineRIPK3 geneRegimenReportingResearch PersonnelRheumatoid ArthritisSafetySeriesSignal PathwayStructureStructure-Activity RelationshipSystemic Inflammatory Response SyndromeTNF geneTestingTherapeuticToxic effectTreatment EfficacyVaccinesViralViral PathogenesisViral PneumoniaVirulentVirusVirus Diseasesairway epitheliumanalogappropriate dosebasecell typeclinically relevantdrug discoveryflugenomic RNAhigh riskimprovedin vivoin vivo Modelinfluenza virus straininhibitorkinase inhibitorlung injurymortalitymouse modelnovel therapeuticspandemic diseasepandemic influenzaprogramsscaffoldseasonal influenzasensorsmall moleculetherapeutic developmenttherapeutic evaluationtherapeutic targettranslational potentialtreatment strategyviral resistance
项目摘要
PROJECT SUMMARY/ABSTRACT
Seasonal influenza A virus (IAV) infections account for over 700,000 hospitalizations and 50,000 annual deaths
in the US alone. Moreover, highly virulent H5 and H7 strains of avian IAV, while currently limited in their spread
between humans, are only a few mutations from acquiring the capacity for widespread transmissibility. As
current vaccines and antiviral strategies are either limited in their efficacy or susceptible to viral resistance and
evasion, identifying new therapeutic entry-points for seasonal and virulent IAV disease, preferably those that
target pathogenic host signaling pathways, is an urgent imperative. We have identified the host kinase RIPK3
as a promising new entry point for therapeutic development against IAV. RIPK3 is the central mediator of a
highly pro-inflammatory form of cell death termed necroptosis, which we have found is a major contributor to
lung injury and inflammation during IAV infection. Both seasonal and pandemic strains of IAV trigger RIPK3-
dependent necrotic lung damage that we propose underlies Acute Respiratory Distress Syndrome (ARDS), as
well as viral and bacterial pneumonia, each of which remain major causes of morbidity and mortality following
IAV infection. Notably, RIPK3 also mediates or amplifies a range of chronic TNF-α-mediated pathologies (such
as rheumatoid arthritis) making it a very attractive new molecular target for multiple inflammatory conditions.
Curiously, given how important a therapeutic target RIPK3 potentially is, no selective RIPK3 inhibitors have
been advanced into clinical trials. We now have developed a new structural class of RIPK3 inhibitor, which we
call the UH15 series, and which is based on a pyrido[2,3-d]pyrimidine scaffold that targets both the ATP- as
well as the allosteric Glu-out pockets of RIPK3. Our preliminary findings reveal that UH15 analogs, after just
one round of optimization, are already more potent than current RIPK3 inhibitors and display promising activity
against IAV induced necrosis in vitro and in vivo. These exciting results highlight the immediate translational
potential of the UH15 series for necrotic lung injury and consequent ARDS and pneumonia triggered by
seasonal and virulent strains of IAV. The goals of our proposal are to iteratively optimize UH15-based
compounds for RIPK3 blockade in vitro and, by use of a rapid mouse model of RIPK3-mediated pathology (the
TNF SIRS model), prioritize compounds for use in vivo (Aim 1). We then propose to assess these UH15
compounds for therapeutic efficacy in a variety of IAV-triggered disease settings, including the scenarios of (1)
high-risk seasonal IAV infections, (2) infection by highly pathogenic avian IAV, and (3) secondary pneumococcal
pneumonia following seasonal IAV infection (Aim 2). The proposed studies bring together a team of researchers
with strong, complementary expertise in small-molecule medicinal chemistry (Cuny), RIPK3 kinase biochemistry
and function in inflammation (Degterev), and RIPK3-mediated cell death signaling during IAV pathogenesis
(Balachandran, Thomas). Successful completion of these Aims has the potential to transform the treatment of
multiple IAV-induced diseases initiated or amplified by necrotic lung injury.
项目摘要/摘要
季节性流感病毒(IAV)感染占70万住院和50,000年死亡
此外
在人类之间,只有少数突变获得了广泛的传播能力
当前的疫苗和抗病毒策略要么受到限制,要么容易受到病毒恢复的影响
逃避,确定针对季节性和病毒IAV疾病的新的治疗切入点,最好是
目标致病宿主信号通路是紧急的势力。
尽可能多地为AS的中央介体A的中央介体A的中央介体
高度促炎的细胞死亡形式称为坏死性,我们发现这也是主要贡献者
IAV感染期间的肺损伤和炎症。
我们提出的依赖性坏死肺损害,急性呼吸窘迫综合征(ARDS)
以及病毒和逆性性肺炎,每种肺炎都是死亡的主要原因
IAV感染。
作为类风湿关节炎),使其具有多种炎症状况的新分子靶标。
奇怪的是,考虑到治疗靶标RIPK3的重要性可能是多么重要,没有选择性RIPK3抑制剂具有
已进入临床试验。
调用UH15系列,并基于pyrido [2,3-D]嘧啶支架,该嘧啶脚手架均针对ATP-AS
以及我们的初步发现的同种异性ripk3。
一轮优化,比当前的RIPK3抑制剂更有效,并且表现出有希望的活动
IAV在体外和体内诱导坏死。
UH15系列的坏死性肺肺肺的潜力以及肺炎和肺炎触发。
IAV的季节性和病毒性菌株。
RIPK3在体外进行阻断的化合物,并通过使用RIPK3介导的病理的快速小鼠模型(The)
TNF SIRS模型),优先使用用于体内的组合(AIM 1)。
在各种AV触发疾病环境中具有治疗功效的化合物,包括(1)的情景
高风险的季节性IAV感染,(2)高度致病的鸟类IAV感染和(3)次级肺炎
季节性IAV感染后的肺炎(AIM 2)。
具有强大的小分子药物化学(CUNY)的互补专业知识
在IAV发病机理期间,炎症(Degterev)和RIPK3介导的细胞死亡信号传导中的功能和功能
(Balachandran,Thomas)。
由坏死肺肺肺部引发或扩增多种IAV诱导的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIDDHARTH BALACHANDRAN其他文献
SIDDHARTH BALACHANDRAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIDDHARTH BALACHANDRAN', 18)}}的其他基金
Small-molecule exploitation of ZBP1-driven nuclear necroptosis for cancer immunotherapy
ZBP1 驱动的核坏死性凋亡的小分子开发用于癌症免疫治疗
- 批准号:
10586659 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
Harnessing ZBP1-triggered cell death to enhance influenza vaccine responsiveness
利用 ZBP1 触发的细胞死亡来增强流感疫苗的反应性
- 批准号:
10884586 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
Role of ZBP1 in pathogenesis of Salmonella biofilms
ZBP1 在沙门氏菌生物膜发病机制中的作用
- 批准号:
10658383 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
Necroptosis in SARS-CoV-2 pathogenesis, evolution, and therapy
SARS-CoV-2 发病机制、进化和治疗中的坏死性凋亡
- 批准号:
10433040 - 财政年份:2022
- 资助金额:
$ 73.17万 - 项目类别:
Necroptosis in SARS-CoV-2 pathogenesis, evolution, and therapy
SARS-CoV-2 发病机制、进化和治疗中的坏死性凋亡
- 批准号:
10557863 - 财政年份:2022
- 资助金额:
$ 73.17万 - 项目类别:
Harnessing ZBP1-driven cell death to improve influenza vaccine efficacy
利用 ZBP1 驱动的细胞死亡来提高流感疫苗的功效
- 批准号:
10455196 - 财政年份:2021
- 资助金额:
$ 73.17万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10020307 - 财政年份:2019
- 资助金额:
$ 73.17万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10689229 - 财政年份:2019
- 资助金额:
$ 73.17万 - 项目类别:
Targeting RIPK3 in Flu-Associated Lung Injury
靶向 RIPK3 治疗流感相关肺损伤
- 批准号:
10238084 - 财政年份:2019
- 资助金额:
$ 73.17万 - 项目类别:
Mechanism, Function, and Exploitation of Influenza A Virus-Activated Cell Death
甲型流感病毒激活的细胞死亡的机制、功能和利用
- 批准号:
10247652 - 财政年份:2017
- 资助金额:
$ 73.17万 - 项目类别:
相似国自然基金
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亚低温对急性呼吸窘迫综合征大鼠TLR4/MyD88信号通路的影响
- 批准号:81660313
- 批准年份:2016
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
吸气和呼气肌肉活动对ARDS机械通气影响及其机制的实验研究
- 批准号:81660018
- 批准年份:2016
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
消退素D1对肺泡巨噬细胞表型转化的影响及机制研究
- 批准号:81570076
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
高密度脂蛋白异常修饰在急性呼吸窘迫综合征发病中对血管内皮细胞功能修复影响的分子机制研究
- 批准号:81570070
- 批准年份:2015
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Function interactions between mitogen-activated protein kinases (MAPKs) and SARS-CoV-2
丝裂原激活蛋白激酶 (MAPK) 与 SARS-CoV-2 之间的功能相互作用
- 批准号:
10659904 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
New mechanism-based TREM-1 therapy for acute respiratory distress syndrome
基于新机制的 TREM-1 疗法治疗急性呼吸窘迫综合征
- 批准号:
10678788 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
- 批准号:
10720687 - 财政年份:2023
- 资助金额:
$ 73.17万 - 项目类别: