Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
基本信息
- 批准号:10471282
- 负责人:
- 金额:$ 23.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-04 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAnimal GeneticsAnimal ModelArchitectureBiologyBlood VesselsBranchial arch structureCardiacCardiac MyocytesCellsCollaborationsConsultDefectDevelopmentDevelopmental BiologyDiastoleDiphtheria ToxinDominant-Negative MutationDoxorubicinEmbryoFishesFluorescence MicroscopyGenetic EngineeringGenetic ModelsGoalsHealth SciencesHeartHeart AbnormalitiesHeart InjuriesHeterogeneityImageJointsKnowledgeLightLiteratureMagnetic Resonance ImagingMechanicsMediatingMedical centerMentorshipMessenger RNAModelingMusMyocardialMyocardiumNatural regenerationNeural CrestNeural Crest CellNeural tubeNotch Signaling PathwayOregonPeriodicalsPhasePhenotypePhysiologicalPopulationRecovery of FunctionRegulationResolutionRoleSignal TransductionStructureSystoleTechniquesTestingTracerTransgenic AnimalsTransgenic ModelTransgenic OrganismsUniversitiesVentricularVentricular RemodelingZebrafishbasecongenital heart disorderfluorescence microscopeheart dimension/sizeimage processingimprovedinsightmechanotransductionmigrationmouse modelmutantneonatal miceneural networknotch proteinoverexpressionprofessorrepairedrestorationseptal defectspatiotemporalstem cellsvirtual reality
项目摘要
Project Summary / Abstract
Integrating imaging and computation to characterize neural crest cells in the myocardial development
and regeneration
Cardiac neural crest cells are a population of highly migratory cells emerging from the neural tube, migrating
through the pharyngeal arches and integrating into the developing heart. Recent advances demonstrate that a
new sub-population of neural crest cells has the capacity to integrate into the cardiac chamber and differentiate
into cardiomyocytes in both zebrafish and mice. Notch signaling regulates cardiomyocyte proliferation and
differentiation during ventricular chamber development. Despite the knowledge gained in the past decades, the
contribution of neural crest-derived cardiomyocytes to contractile function and the role of these cardiomyocytes
in Notch signaling-mediated ventricular remodeling remain elusive. The small heart size in zebrafish embryos
and neonatal mice also hinders precise cardiac structural and functional assessment. For these reasons, I seek
to integrate our advanced imaging (sub-voxel resolution light-sheet fluorescence microscopy, SV-LSFM) with
computation (displacement analysis of myocardial mechanical deformation, DIAMOND) to characterize the
structural and functional contributions of the neural crest-derived cardiomyocytes to the myocardial development
and regeneration with high spatiotemporal resolution. Under the joint mentorship from Professor Tzung Hsiai
(Mechanotransduction, UCLA), Professor Jau-Nian Chen (Developmental biology, UCLA) and Professor Debiao
Li (MR imaging, Cedars-Sinai Medical Center), I will continue to collaborate with Professor Atsushi Nakano
(Developmental biology, UCLA) and Dr. Adam Langenbacher (Developmental biology, UCLA), and consult with
Professor Joseph Wu (Cardiac stem cells, Stanford), Professor Sandra Rugonyi (Oregon Health & Science
University), Professor Linda Demer (Vascular biology, UCLA) to test our hypothesis. We hypothesize that neural
crest cells contribute to the ventricular myocardium and neural crest-derived cardiomyocytes are essential for
the contractile function and ventricular repair. To test this hypothesis, we will have three aims. In Aim 1, we will
elucidate the 4-D migration path of cardiac neural crest cell via SV-LSFM. In Aim 2, we will demonstrate 4-D
structure and function following cardiac neural crest cell contribution to the ventricular myocardium via DIAMOND.
In Aim 3, I will independently quantify the ventricular repair following the ablation of neural crest-derived
cardiomyocytes in zebrafish and mouse models with my collaborators. In this context, we believe that the
integration of genetic models with advanced imaging and computation will provide new mechanical and
developmental insights into the contribution of neural crest cells to contractile function and ventricular repair
under the regulation of Notch signaling pathway.
项目概要/摘要
整合成像和计算来表征心肌发育中的神经嵴细胞
和再生
心脏神经嵴细胞是从神经管中出现的高度迁移的细胞群,迁移
通过咽弓并融入发育中的心脏。最近的进展表明
新的神经嵴细胞亚群具有整合到心室并分化的能力
进入斑马鱼和小鼠的心肌细胞。 Notch 信号调节心肌细胞增殖
心室发育过程中的分化。尽管在过去几十年中获得了知识,
神经嵴源性心肌细胞对收缩功能的贡献以及这些心肌细胞的作用
Notch信号介导的心室重塑仍然难以捉摸。斑马鱼胚胎的心脏尺寸较小
新生小鼠也阻碍了精确的心脏结构和功能评估。由于这些原因,我寻求
将我们的先进成像(亚体素分辨率光片荧光显微镜,SV-LSFM)与
计算(心肌机械变形的位移分析,DIAMOND)来表征
神经嵴源性心肌细胞对心肌发育的结构和功能贡献
和高时空分辨率的再生。在夏宗教授的共同指导下
(加州大学洛杉矶分校机械转导)、Jau-Nian Chen 教授(加州大学洛杉矶分校发育生物学)和德彪教授
Li(MR 成像,Cedars-Sinai 医疗中心),我将继续与 Atsushi Nakano 教授合作
(发育生物学,加州大学洛杉矶分校)和 Adam Langenbacher 博士(发育生物学,加州大学洛杉矶分校),并咨询
Joseph Wu 教授(斯坦福大学心脏干细胞)、Sandra Rugonyi 教授(俄勒冈州健康与科学)
大学)的 Linda Demer 教授(血管生物学,加州大学洛杉矶分校)来检验我们的假设。我们假设神经
嵴细胞对心室肌有贡献,而神经嵴衍生的心肌细胞对于
收缩功能和心室修复。为了检验这个假设,我们将有三个目标。在目标 1 中,我们将
通过 SV-LSFM 阐明心脏神经嵴细胞的 4-D 迁移路径。在目标 2 中,我们将演示 4-D
心脏神经嵴细胞通过 DIAMOND 对心室肌的贡献后的结构和功能。
在目标 3 中,我将独立量化神经嵴源性消融后的心室修复
与我的合作者一起研究斑马鱼和小鼠模型中的心肌细胞。在此背景下,我们认为
遗传模型与先进成像和计算的集成将提供新的机械和
关于神经嵴细胞对收缩功能和心室修复的贡献的发展见解
受Notch信号通路的调控。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice.
新生小鼠心脏结构的光片成像和交互式分析。
- DOI:10.1002/jbio.202200278
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Sodimu,Oluwatofunmi;Almasian,Milad;Gan,Peiheng;Hassan,Sohail;Zhang,Xinyuan;Liu,Ning;Ding,Yichen
- 通讯作者:Ding,Yichen
Computational Analysis of Cardiac Contractile Function.
- DOI:10.1007/s11886-022-01814-1
- 发表时间:2022-12
- 期刊:
- 影响因子:3.7
- 作者:Zhang, Xinyuan;Alexander, Ritzia Vinu;Yuan, Jie;Ding, Yichen
- 通讯作者:Ding, Yichen
Deep Neural Network-Aided Histopathological Analysis of Myocardial Injury.
- DOI:10.3389/fcvm.2021.724183
- 发表时间:2021
- 期刊:
- 影响因子:3.6
- 作者:Jiao Y;Yuan J;Sodimu OM;Qiang Y;Ding Y
- 通讯作者:Ding Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yichen Ding其他文献
Yichen Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yichen Ding', 18)}}的其他基金
Volumetric imaging and computation to characterize cardiac electromechanical coupling
体积成像和计算来表征心脏机电耦合
- 批准号:
10629905 - 财政年份:2023
- 资助金额:
$ 23.89万 - 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
- 批准号:
10203220 - 财政年份:2020
- 资助金额:
$ 23.89万 - 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
- 批准号:
10252944 - 财政年份:2020
- 资助金额:
$ 23.89万 - 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
- 批准号:
9806864 - 财政年份:2019
- 资助金额:
$ 23.89万 - 项目类别:
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“ROS响应开关”靶向脂质体减少心脏射频消融术后电传导恢复的研究
- 批准号:82370318
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
消融热效应下肝癌超级增强子驱动的DNAJB1与cIAP2互作对中性粒细胞胞外诱捕网(NETs)形成的作用及机制探究
- 批准号:82302319
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
- 批准号:
10373269 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Investigating Pathophysiology of Glioma Stem Cells in 3D Bioprinted Vascularized Glioblastoma Model
研究 3D 生物打印血管化胶质母细胞瘤模型中胶质瘤干细胞的病理生理学
- 批准号:
10545037 - 财政年份:2022
- 资助金额:
$ 23.89万 - 项目类别:
Protein methylation pathways that control genetic susceptibility to environmental pollutants in the occurrence of craniofacial defects
控制颅面缺陷发生过程中环境污染物遗传易感性的蛋白质甲基化途径
- 批准号:
10651798 - 财政年份:2021
- 资助金额:
$ 23.89万 - 项目类别:
Protein methylation pathways that control genetic susceptibility to environmental pollutants in the occurrence of craniofacial defects
控制颅面缺陷发生过程中环境污染物遗传易感性的蛋白质甲基化途径
- 批准号:
10277389 - 财政年份:2021
- 资助金额:
$ 23.89万 - 项目类别:
Protein methylation pathways that control genetic susceptibility to environmental pollutants in the occurrence of craniofacial defects
控制颅面缺陷发生过程中环境污染物遗传易感性的蛋白质甲基化途径
- 批准号:
10436980 - 财政年份:2021
- 资助金额:
$ 23.89万 - 项目类别: