Volumetric imaging and computation to characterize cardiac electromechanical coupling

体积成像和计算来表征心脏机电耦合

基本信息

  • 批准号:
    10629905
  • 负责人:
  • 金额:
    $ 38.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2028-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Volumetric imaging and computation to characterize cardiac electromechanical coupling Approximately 450,000 individuals in the United States die suddenly from cardiac arrhythmias every year. Many widely used medications such as antiarrhythmic agents, antimicrobials, anticancer drugs, and psychotropic drugs can cause or exacerbate a variety of arrhythmias. However, the fundamental mechanisms of most clinical arrhythmias remain poorly understood. The ability to prospectively identify potentially arrhythmogenic compounds would be clinically valuable. Recent advances demonstrate that zebrafish are a productive model system to screen small molecules that function as arrhythmic compounds in humans. However, much remains unknown about the involved excitation-contraction coupling abnormalities and mechanisms of arrhythmias associated with specific drugs. Despite the new zebrafish lines gained in past decades, technical difficulties including motion artifact, frame rate, penetration depth, and signal-to-noise ratio limits the in-depth investigation of aberrant calcium activities and contractile dysfunction. For this reason, we seek to integrate our 4-dimensional (4D, 3D spatial + 1D temporal) volumetric imaging with computational model to investigate whether a common mechanism of action underlies drug-induced excitation-contraction coupling abnormalities. In collaboration with Dr. Kelli Carroll (developmental biology), Dr. Catherine Makarewich (calcium signaling), and Dr. Jay Kuo (machine learning), we will test the hypothesis that small molecule-induced bradycardia activates distinct EC coupling abnormalities responsible for various arrhythmias. In Aim 1, we will reveal the 4D calcium activities across the intact heart with high spatiotemporal resolution via our custom-built structured-illumination light-field microscope. In Aim 2, we will elucidate the electromechanical interaction among neighboring cardiomyocytes during 5~10 cardiac cycles. In Aim 3, we will assess the excitation-contraction coupling abnormalities induced by small molecule compounds. In this context, success of this research will establish a new holistic strategy to in vivo investigate sophisticated electromechanical interaction, providing an entry point to further study the underlying mechanism of arrhythmias and prospectively identify arrhythmogenic compounds.
项目摘要 /摘要 体积成像和计算以表征心脏机电耦合 每年,美国大约有450,000名患者突然死于心脏心律不齐。许多 广泛使用的药物,例如抗心律失常剂,抗菌药物,抗癌药和精神药物 会导致或加剧各种心律不齐。但是,大多数临床的基本机制 心律不齐仍然不足。前瞻性识别潜在心律不齐的能力 化合物在临床上是有价值的。最近的进步表明斑马鱼是一种富有成效的模型 筛选小分子的系统,这些分子起着人类心律不齐化合物的作用。但是,剩下很多 关于心律不齐的涉及激发反应偶联异常和机制的未知 与特定药物有关。尽管过去几十年来获得了新的斑马鱼线,但技术困难 包括运动伪影,帧速率,穿透深度和信噪比限制了深入研究 异常的钙活动和收缩功能障碍。因此,我们试图整合我们的4维 (4D,3D空间 + 1D颞)使用计算模型进行体积成像,以研究是否常见 作用机理是药物诱导的激发反应偶联异常的基础。与 Kelli Carroll博士(发展生物学),Catherine Makarewich博士(钙信号)和Jay Kuo博士 (机器学习),我们将检验以下假设:小分子诱导的心动过缓会激活不同的EC 导致各种心律不齐的耦合异常。在AIM 1中,我们将揭示4D钙活动 通过我们定制的结构化灯场,穿越完整的心脏,具有高时空分辨率 显微镜。在AIM 2中,我们将阐明相邻心肌细胞之间的机电相互作用 在5〜10心脏周期中。在AIM 3中,我们将评估引起的激发反应偶联异常 通过小分子化合物。在这种情况下,这项研究的成功将建立一个新的整体策略 体内研究复杂的机电相互作用,提供了进一步研究的切入点 心律不齐的基本机制,并前瞻性地识别心律不齐化合物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Yichen Ding的其他基金

Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
  • 批准号:
    10203220
    10203220
  • 财政年份:
    2020
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
  • 批准号:
    10252944
    10252944
  • 财政年份:
    2020
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
  • 批准号:
    10471282
    10471282
  • 财政年份:
    2020
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Integrating imaging and computation to characterize neural crest cells in the myocardial development and regeneration
整合成像和计算来表征心肌发育和再生中的神经嵴细胞
  • 批准号:
    9806864
    9806864
  • 财政年份:
    2019
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
  • 批准号:
    22379027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
  • 批准号:
    32300624
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Identification of a targeted anti-mitotic agent that degrades Myc and specifically induces cancer cell death
鉴定可降解 Myc 并特异性诱导癌细胞死亡的靶向抗有丝分裂剂
  • 批准号:
    10534020
    10534020
  • 财政年份:
    2022
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Connecting Subcellular Electrophysiology to Patient Arrhythmia: A Case Study of Amiodarone
将亚细胞电生理学与患者心律失常联系起来:胺碘酮的案例研究
  • 批准号:
    10795635
    10795635
  • 财政年份:
    2022
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Identification of a targeted anti-mitotic agent that degrades Myc and specifically induces cancer cell death
鉴定可降解 Myc 并特异性诱导癌细胞死亡的靶向抗有丝分裂剂
  • 批准号:
    10652394
    10652394
  • 财政年份:
    2022
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Off-label drugs in cardiology: evaluating age- and disease-appropriate therapies
心脏病学中的标签外药物:评估适合年龄和疾病的疗法
  • 批准号:
    10578746
    10578746
  • 财政年份:
    2022
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别:
Skin-like, stretchable, and wearable sensors for monitoring QT interval and hemodynamic variables in Atrial Fibrillation
用于监测房颤 QT 间期和血流动力学变量的类肤、可拉伸和可穿戴传感器
  • 批准号:
    10490960
    10490960
  • 财政年份:
    2021
  • 资助金额:
    $ 38.39万
    $ 38.39万
  • 项目类别: