Trillion cell culture to fuel organ biofabrication
万亿细胞培养为器官生物制造提供燃料
基本信息
- 批准号:10473259
- 负责人:
- 金额:$ 141.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAutologousBioreactorsBlood VesselsCardiacCardiac MyocytesCell Culture TechniquesCell Differentiation processCell MaintenanceCellsCre lox recombination systemCustomDevelopmentEFRACElectric StimulationEndothelial CellsEngineeringFibroblastsFutureGoalsGrowth FactorGrowth Factor ReceptorsHumanHuman EngineeringLaboratoriesMaintenanceMechanical StimulationMethodsModelingMyocardialOrganOrgan TransplantationOrgan failureOrganoidsPatientsPerfusionProductionProtocols documentationResearchResearch PersonnelSuspension CultureTherapeuticThickVascularizationVisionbiofabricationbioinkbioprintingbody systemcell typecostinduced pluripotent stem cellnovelstem cell growthstem cellssynthetic biologytranscription factor
项目摘要
PROJECT SUMMARY
The convergence of human induced pluripotent stem cells (hiPSCs), organoids, synthetic biology and 3D
bioprinting promises a future of patient-specific lab-grown organs for patients suffering from organ failure.
However, to realize this organ engineering vision, biofabrication researchers sorely need thousand-liter-scale
cultures of hiPSCs to generate enough material to begin high-throughput experimentation. Solving the myriad
challenges in organ construction, vascularization, maintenance, maturation, and characterization will require
decades of painstaking research. Yet, deriving patient-specific cells at this scale remains two orders of
magnitude too expensive for academic laboratories due, in large part, to the expensive growth factors required
for hiPSC maintenance and differentiation. Furthermore, existing protocols to generate organoids from stem cells
are cumbersome, slow, and inefficient, limiting the number of organoids that can be derived for 3D bioprinting
applications. In these proposed studies, we detail novel methods to dramatically reduce the cost of stem cell
maintenance and increase the scale of organoid production. To reduce the costs of large-scale hiPSC growth
by two orders of magnitude, we propose to engineer growth factor-free hiPSCs by programming them to express
constitutively-active growth factor receptors which can be excised prior to differentiation. To enhance the scale
and throughput in generating multicellular cardiac organoids, we propose engineering hiPSCs to undergo
simultaneous multicellular differentiation without requiring growth factors. To achieve this, we propose a novel
stochastic Cre-lox recombination system to upregulate one-of-three transcription factors, EOMES, Nkx3.1, or
ETV2, to generate tri-cellular synthetic cardiac organoids containing cardiomyocytes, fibroblasts, and endothelial
cells, respectively. By culturing millions of these synthetic cardiac organoids in suspension culture, we will derive
therapeutically-relevant quantities of densely cellular myocardial bioink for 3D bioprinting. We will next use
synthetic cardiac organoid bioink to derive a human-scale, thick-walled, and vascularized ventricle model. These
bioprinted ventricles will be housed in a custom perfusion bioreactor for studying how mechanical and electrical
stimulation can maintain vascular perfusion, enhance cardiomyocyte maturation and alignment, and affect organ-
scale contractility and ejection fraction. The highly scalable stem cell and organoid culture methods presented
here are applicable across many organ systems, and could revolutionize the scale and pace of organ
biofabrication research.
项目概要
人类诱导多能干细胞 (hiPSC)、类器官、合成生物学和 3D 的融合
生物打印有望为患有器官衰竭的患者提供针对患者的实验室培养器官的未来。
然而,为了实现这一器官工程愿景,生物制造研究人员迫切需要千升规模的
hiPSC 培养物以产生足够的材料来开始高通量实验。解决无数
器官构建、血管化、维护、成熟和表征方面的挑战将需要
几十年的潜心研究。然而,以这种规模获得患者特异性细胞仍然需要两个数量级
对于学术实验室来说过于昂贵,这在很大程度上是由于所需的昂贵的生长因子
用于 hiPSC 的维护和分化。此外,现有的从干细胞生成类器官的方案
繁琐、缓慢且低效,限制了可用于 3D 生物打印的类器官的数量
应用程序。在这些拟议的研究中,我们详细介绍了大幅降低干细胞成本的新方法
维持并增加类器官生产规模。降低大规模 hiPSC 生长的成本
通过两个数量级,我们建议通过对无生长因子的 hiPSC 进行编程来表达它们
组成型活性生长因子受体,可以在分化前切除。为提升规模
和生成多细胞心脏类器官的吞吐量,我们建议对 hiPSC 进行工程设计以进行
无需生长因子即可同时进行多细胞分化。为了实现这一目标,我们提出了一部小说
随机 Cre-lox 重组系统上调三个转录因子 EOMES、Nkx3.1 之一或
ETV2,生成含有心肌细胞、成纤维细胞和内皮细胞的三细胞合成心脏类器官
细胞,分别。通过在悬浮培养物中培养数百万个此类合成心脏类器官,我们将得出
用于 3D 生物打印的治疗相关量的致密细胞心肌生物墨水。我们接下来会用到
合成心脏类器官生物墨水,以获得人体规模、厚壁和血管化的心室模型。这些
生物打印的心室将被安置在定制的灌注生物反应器中,用于研究机械和电气如何
刺激可以维持血管灌注,增强心肌细胞的成熟和排列,并影响器官
鳞片收缩力和射血分数。提出了高度可扩展的干细胞和类器官培养方法
这些适用于许多器官系统,并且可以彻底改变器官的规模和速度
生物制造研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark A. Skylar-Scott其他文献
Mark A. Skylar-Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark A. Skylar-Scott', 18)}}的其他基金
Hatching Organoids for Continuous Tissue Production Pipelines
用于连续组织生产管道的孵化类器官
- 批准号:
10433762 - 财政年份:2022
- 资助金额:
$ 141.66万 - 项目类别:
Hatching Organoids for Continuous Tissue Production Pipelines
用于连续组织生产管道的孵化类器官
- 批准号:
10667497 - 财政年份:2022
- 资助金额:
$ 141.66万 - 项目类别:
相似国自然基金
不同胚层起源移植骨块中Hoxc10调控Caspase3影响自体骨移植愈合的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
循环肿瘤细胞miR-124-3p/CTNNB1/Wnt信号轴影响肝癌围手术期自体血回输安全性的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
自体血管内皮祖细胞移植对兔椎体骨性终板血管化的影响及其逆转椎间盘退变的机制研究
- 批准号:81972118
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
自体污染物与环境温度对人体的耦合影响及其机理
- 批准号:51778625
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
VEGF/ANG-1基因纳米缓释微球靶向SVF细胞对游离移植脂肪血管化影响的研究
- 批准号:81571923
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 141.66万 - 项目类别:
Human mast cells as a platform for new cancer immunotherapy strategies
人类肥大细胞作为新癌症免疫治疗策略的平台
- 批准号:
10729728 - 财政年份:2023
- 资助金额:
$ 141.66万 - 项目类别:
Engineering detours around the biologic barriers to allogeneic, iPSC-derived CAR T immunotherapy
工程绕开了同种异体、iPSC 衍生的 CAR T 免疫疗法的生物障碍
- 批准号:
10607952 - 财政年份:2023
- 资助金额:
$ 141.66万 - 项目类别:
Personalized bioprinting technology for de novo PDL regeneration
用于 PDL 从头再生的个性化生物打印技术
- 批准号:
10667088 - 财政年份:2023
- 资助金额:
$ 141.66万 - 项目类别:
3D bioprinting of regenerative, corneal cell-laden inks to treat corneal blindness
3D 生物打印充满角膜细胞的再生墨水来治疗角膜失明
- 批准号:
10606474 - 财政年份:2023
- 资助金额:
$ 141.66万 - 项目类别: