Real-time noninvasive visualization of endotracheal tube placement and 3D lung monitoring in infants with electrical impedance tomography
通过电阻抗断层扫描实时无创可视化婴儿气管插管放置和 3D 肺部监测
基本信息
- 批准号:10456497
- 负责人:
- 金额:$ 83.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcademic Medical CentersAlgorithmsBedside TechnologyBlindedBronchiCessation of lifeClassificationClinicalColoradoDataDatabasesDetectionElectrodesEmergency SituationEnrollmentEsophagusFunctional ImagingGoalsHypoxemiaImageImaging TechniquesInfantIntubationIonizing radiationLeadLeftLungMapsMeasuresMechanical ventilationModificationMonitorNatureNeonatal Intensive Care UnitsNetwork-basedNewborn InfantObservational StudyOperating RoomsOutputPatientsPneumothoraxPositioning AttributeProbabilityRadiationResearchRoentgen RaysSalineScanningSourceSystemTechniquesTechnologyTimeTracheaTrainingTubeUnited StatesUniversitiesVisualizationX-Ray Computed Tomographyadverse outcomebasecarinaclassification algorithmclinical decision-makingconvolutional neural networkdeep learningdeep learning algorithmelectrical impedance tomographyendotracheallung imagingmodels and simulationneonatenovelportabilitypreventprospectivepublic health relevancereal-time imagesreconstructionside effectskillsstandard of carestemsuccessultrasoundventilationvoltage
项目摘要
PROJECT SUMMARY
Over 100,000 newborns receive mechanical ventilation through an endotracheal tube
(ETT) each year in the United States. Intubating newborns is challenging due to their
size and delicate nature, and unfortunately, nearly 40% of the initial intubation attempts
are incorrect, and the tube is inadvertently placed in the esophagus instead of the
trachea, or too deep in the main stem bronchus, leading to ventilation of only one lung,
or with the tip of the tube too high in the trachea. It is critical to detect malpositioning of
the tube promptly. The goal of this research is to develop Simultaneous Multi-Source
Electrical Impedance Tomography (SMS-EIT) technology for the bedside to correctly
and instantly identify ETT position or malposition. In this application we will combine (1)
deep learning EIT-based confirmation of ETT placement with (2) EIT images of lungs
being ventilated. Together, this would provide clinicians and bedside staff with a real-
time, closed-loop system for determining if (1) the ETT was inserted in the correct
lumen (trachea, not esophagus) and (2) if the lungs are being ventilated appropriately to
detect left or right mainstem bronchial malplacement. The same system with no change
in electrode placement could be used to monitor for inadvertent extubation and for the
onset of emergency conditions such as pneumothorax.
EIT is a noninvasive, non-ionizing functional imaging technique in which images are
formed from voltages measured on electrodes on the body arising from imperceptible
applied currents. Since EIT is a safe and portable technology with no damaging side
effects, it can be used both for continuous monitoring and as needed. Our
interdisciplinary team from GE Research, Colorado State University, and Stanford
University will develop and validate the specialized SMS-EIT system through three
specific aims. The first aim is to develop and implement an electrode configuration,
reconstruction algorithms, and hardware modifications of the GE SMS-EIT system for
the special needs of neonates and this project. In the second aim, training data and a
deep learning classification algorithm to classify intubation as correct, esophageal, too
high, or mainstem bronchial misplacement will be developed. The efficacy and clinical
feasibility of the SMS-EIT system and algorithms for the real-time detection and
classification of ETT malplacement will be evaluated in a study of 30 infants in the Level
IV NICU at Stanford University Medical Center.
项目摘要
超过100,000名新生儿通过气管管接收机械通风
(ETT)每年在美国。由于他们的
大小和微妙的性质,不幸的是,近40%的初始插管尝试
是不正确的,并且管被无意间放在食道而不是
气管或在主茎支气管中太深,导致仅通气一个肺,
或带管的尖端在气管中过高。检测到不正确的
管子迅速。这项研究的目的是共同开发同时的多源
床边的电阻抗断层扫描(SMS-EIT)技术正确
并立即确定ETT位置或错误。在此应用中,我们将结合(1)
基于(2)肺的EIT图像对ETT放置的深度学习确认
被通风。这将为临床医生和床头员工提供现实
时间,闭环系统,用于确定(1)是否将ETT插入正确
管腔(气管,不是食道)和(2)如果肺被适当通风至
检测左或右主系统支气管畸形。没有更改的同一系统
在电极中,可用于监视无意的拔管和
紧急状况(例如气胸)的发作。
EIT是一种无创的,非电离的功能成像技术,其中图像是
由在无法察觉的体内的电极上测量的电压形成
施加电流。由于EIT是一项安全且便携的技术,没有破坏性的一面
效果,它既可以根据需要进行连续监视。我们的
GE研究,科罗拉多州立大学和斯坦福大学的跨学科团队
大学将通过三个开发和验证专业的SMS-EIT系统
具体目标。第一个目的是开发和实施电极配置,
重建算法和用于GE SMS-EIT系统的硬件修改
新生儿和该项目的特殊需求。在第二个目标中,培训数据和
深度学习分类算法也将插管分类为正确的食管
将开发高或主要的支气管错位。功效和临床
SMS-EIT系统和实时检测算法的可行性和
将在对30位婴儿的研究中评估ETT损坏的分类
IV NICU在斯坦福大学医学中心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Lynn Mueller其他文献
Jennifer Lynn Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Lynn Mueller', 18)}}的其他基金
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
10311877 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
9903293 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
Real-Time Assessment of Lung Structure and Function in CF Patients using Electrical Impedance Tomography
使用电阻抗断层扫描实时评估 CF 患者的肺结构和功能
- 批准号:
10490818 - 财政年份:2019
- 资助金额:
$ 83.58万 - 项目类别:
EIT: a non-radiating functional imaging method for cystic fibrosis
EIT:囊性纤维化的非辐射功能成像方法
- 批准号:
8638305 - 财政年份:2013
- 资助金额:
$ 83.58万 - 项目类别:
EIT: a non-radiating functional imaging method for cystic fibrosis
EIT:囊性纤维化的非辐射功能成像方法
- 批准号:
8741735 - 财政年份:2013
- 资助金额:
$ 83.58万 - 项目类别:
Exploratory Innovations in Electrical Impedance Tomography
电阻抗断层扫描的探索性创新
- 批准号:
7798453 - 财政年份:2010
- 资助金额:
$ 83.58万 - 项目类别:
Exploratory Innovations in Electrical Impedance Tomography
电阻抗断层扫描的探索性创新
- 批准号:
8050145 - 财政年份:2010
- 资助金额:
$ 83.58万 - 项目类别:
相似海外基金
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9348616 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
Building a Systems Approach to Community Health and Health Equity for Academic Medical Centers
为学术医疗中心建立社区健康和健康公平的系统方法
- 批准号:
9212055 - 财政年份:2016
- 资助金额:
$ 83.58万 - 项目类别:
A CONFERENCE ON THE 'CRISIS' OF ACADEMIC MEDICAL CENTERS
关于学术医疗中心“危机”的会议
- 批准号:
6335654 - 财政年份:2000
- 资助金额:
$ 83.58万 - 项目类别: