Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
基本信息
- 批准号:10449341
- 负责人:
- 金额:$ 106.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-10 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAntibiotic TherapyAntibioticsBacteriaBindingBiological AssayBlood CirculationCell Membrane PermeabilityCellsChemical StructureCombined AntibioticsCombined Modality TherapyDangerousnessDataDescriptorDoseFolic Acid AntagonistsGenetic EngineeringGoalsGram-Negative BacteriaHealthHealthcare SystemsHumanImmune systemIn VitroInfectionKlebsiella pneumoniaeKnock-outLactamaseLibrariesMeasuresMembraneModelingMolecularMorbidity - disease rateMulti-Drug ResistanceMultidrug-resistant AcinetobacterMusNosocomial InfectionsNutrientPatientsPenetrationPermeabilityPharmaceutical PreparationsPharmacologyPropertyProteomicsPseudomonas aeruginosaPumpRegimenResearchResistanceRespiratory SystemSchemeSeriesSiteStructureSuperbugSystemTimeUnited StatesUp-RegulationUrinary tractVDAC1 geneVertebral columnWorld Health Organizationbasebeta-Lactamasebeta-Lactamscellular imagingcombatcombat woundcostdesignefflux pumpextracellularglobal healthimprovedin vivoinhibitorinnovationinsightmolecular phenotypemortalitymultidisciplinarynovelperiplasmpredictive modelingpreventprospectivereceptorreceptor bindingreceptor expressiontherapeutically effectivetooluptakewound
项目摘要
Project Summary/Abstract
A severe lack of effective antibiotic treatment options against multidrug-resistant (MDR) Gram-negative
bacteria (i.e., “superbugs”) is causing one of the world’s three most serious human health threats. Exacerbating
this is a dramatic decline in the number of new antibiotics effective against MDR Acinetobacter baumannii,
Klebsiella pneumoniae and Pseudomonas aeruginosa. These “superbugs” cause serious bloodstream, respira-
tory and urinary tract, wound, and other infections with very high morbidity and up to 80% mortality. Many
antibiotics have extremely poor penetration to their target site, especially in A. baumannii and P. aeruginosa.
For these antibiotics, the combination of poor target site penetration and extensive efflux causes the antibiotic
concentration at the target site to be over 1,000-fold lower than that of the extracellular antibiotic concentration.
Unsurprisingly, many antibiotic candidates fail because of poor penetration to and/or extensive efflux from their
bacterial target site. Importantly, there are very substantial gaps in the current understanding of how to
maximize the antibiotic target site penetration, avoid efflux from bacterial cells, and thereby maximize receptor
binding. This multi-disciplinary project, however, will identify the molecular determinants of how to maximize
antibiotic target site concentrations and receptor binding to combat resistant “superbugs”. Our preliminary data
and models demonstrate that molecular descriptors can predict the antibiotic target site penetration and effect
of multiple efflux pumps in P. aeruginosa. We have developed a series of assays that characterize the
penetration of key selected antibiotics to their periplasmic or cytosolic target sites and antibiotic binding to their
receptors in intact bacteria. In Aim 1, these new molecular and phenotypic assays will be greatly extended and
applied to all three “superbugs”; additionally, a series of isogenic efflux pump knockout strains will be created.
The resulting data will uniquely inform novel quantitative models (Aim 2) that can predict penetration, efflux,
and thus receptor binding at the bacterial target sites based on molecular antibiotic properties. These models
will enable the targeted synthesis of key selected antibiotic probes (Aim 3) that are used to prospectively
validate these predictive models. These new probes will serve as the backbone of innovative antibiotic combi-
nation dosing strategies that will be rationally optimized via Quantitative and Systems Pharmacology models in
Aim 4. Dynamic in vitro and murine infection models with an intact or compromised immune system will then
prospectively evaluate these combination regimens. These models can simulate antibiotic concentration-time
profiles that mirror those in patients. Overall, this project will provide the molecular insights that enable drug
developers to design new antibiotics that achieve high concentrations at their bacterial target site and thereby
improve receptor binding. This approach and the targeted new antibiotic probes synthesized in this project hold
excellent promise to substantially contribute to combating the three MDR Gram-negative “superbugs”.
项目摘要/摘要
严重缺乏针对多药耐药(MDR)革兰氏阴性剂的有效抗生素治疗选择
细菌(即“超级细菌”)正在造成世界上三个最严重的人类健康威胁之一。加剧
这是针对MDR Acinetobacter Baumannii的新抗生素数量的急剧下降,
肺炎和铜绿假单胞菌。这些“超级细菌”引起严重的血液,呼吸
保守党和尿路,伤口和其他发病率很高,死亡率高达80%。许多
抗生素对目标部位的渗透极差,尤其是在鲍曼尼曲霉和铜绿假单胞菌中。
对于这些抗生素,较差的目标部位渗透和广泛的外排的组合引起了抗生素
目标部位的浓度比细胞外抗生素浓度低1,000倍以上。
毫不奇怪,许多抗生素候选者因渗透不良和/或从其中的大量排出而失败
细菌目标部位。重要的是,当前对如何的理解存在很大的差距
最大化抗生素靶位点渗透,避免从细菌细胞中排出,从而最大化接收器
结合。但是,这个多学科的项目将确定如何最大化的分子决定者
抗生素靶位点浓度和受体结合与抗战斗性“超级细菌”。我们的初步数据
模型表明,分子描述符可以预测抗生素靶点位点的渗透和效果
铜绿假单胞菌中的多个外排泵。我们开发了一系列特征的测定
关键选定的抗生素渗透到其外周或胞质靶位点,并与其抗生素结合
完整细菌中的受体。在AIM 1中,这些新的分子和表型测定将大大扩展,并且
应用于所有三个“超级细菌”;此外,还将创建一系列的等源外排泵敲除菌株。
所得数据将唯一地为新颖的定量模型(AIM 2)提供信息,该模型可以预测渗透率,外排,
因此,基于分子抗生素特性,受体结合在细菌靶位点上。这些模型
将实现关键选定抗生素问题的目标合成(AIM 3),这些抗生素问题用于前瞻性
验证这些预测模型。这些新问题将成为创新抗生素组合的骨干
国家给药策略将通过定量和系统药理学模型合理优化
AIM 4。具有完整或受损的免疫系统的体外和鼠感染模型将
前瞻性评估这些组合方案。这些模型可以模拟抗生素浓度时间
图谱反映了患者中的那些。总体而言,该项目将提供启用药物的分子见解
开发人员设计新的抗生素,可在其细菌靶位点上获得高浓度
改善接收器结合。这种方法和该项目中合成的有针对性的新抗生素探针
极大的希望有助于与三个MDR革兰氏阴(Superbugs)作斗争。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis and Structure-Activity Relationship of Thioacetamide-Triazoles against Escherichia coli.
- DOI:10.3390/molecules27051518
- 发表时间:2022-02-24
- 期刊:
- 影响因子:0
- 作者:Dharuman S;Wallace MJ;Reeve SM;Bulitta JB;Lee RE
- 通讯作者:Lee RE
Penicillin-Binding Protein Occupancy Dataset for 18 β-Lactams and 4 β-Lactamase Inhibitors in Neisseria gonorrhoeae.
淋病奈瑟菌中 18 种 β-内酰胺和 4 种 β-内酰胺酶抑制剂的青霉素结合蛋白占用数据集。
- DOI:10.1128/spectrum.00692-23
- 发表时间:2023-06-15
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
Penicillin-Binding Protein 5/6 Acting as a Decoy Target in Pseudomonas aeruginosa Identified by Whole-Cell Receptor Binding and Quantitative Systems Pharmacology.
- DOI:10.1128/aac.01603-22
- 发表时间:2023-06-15
- 期刊:
- 影响因子:4.9
- 作者:
- 通讯作者:
PBP Target Profiling by β-Lactam and β-Lactamase Inhibitors in Intact Pseudomonas aeruginosa: Effects of the Intrinsic and Acquired Resistance Determinants on the Periplasmic Drug Availability.
- DOI:10.1128/spectrum.03038-22
- 发表时间:2023-02-14
- 期刊:
- 影响因子:3.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jurgen Bernd Bulitta其他文献
Jurgen Bernd Bulitta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jurgen Bernd Bulitta', 18)}}的其他基金
Feasibility of predicting regional lung exposure from systemic pharmacokinetic data of generic OIDPs via population pharmacokinetic modeling and non-compartmental approaches
通过群体药代动力学模型和非房室方法根据仿制药 OIDP 的全身药代动力学数据预测局部肺暴露的可行性
- 批准号:
10797284 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别:
Novel Strategies for Antibiotic Combinations to Combat Gram-negative Superbugs
抗生素组合对抗革兰氏阴性超级细菌的新策略
- 批准号:
10530652 - 财政年份:2019
- 资助金额:
$ 106.82万 - 项目类别:
Novel Strategies for Antibiotic Combinations to Combat Gram-negative Superbugs
抗生素组合对抗革兰氏阴性超级细菌的新策略
- 批准号:
10307517 - 财政年份:2019
- 资助金额:
$ 106.82万 - 项目类别:
Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
- 批准号:
10219080 - 财政年份:2018
- 资助金额:
$ 106.82万 - 项目类别:
Combating resistant superbugs by understanding the molecular determinants of target site penetration and binding
通过了解目标位点渗透和结合的分子决定因素来对抗耐药超级细菌
- 批准号:
9761971 - 财政年份:2018
- 资助金额:
$ 106.82万 - 项目类别:
Next-generation combination dosing strategies to combat resistant Acinetobacter baumannii
对抗耐药鲍曼不动杆菌的下一代组合给药策略
- 批准号:
10291408 - 财政年份:2017
- 资助金额:
$ 106.82万 - 项目类别:
Next-generation combination dosing strategies to combat resistant Acinetobacter baumannii
对抗耐药鲍曼不动杆菌的下一代组合给药策略
- 批准号:
10053289 - 财政年份:2017
- 资助金额:
$ 106.82万 - 项目类别:
Comprehensive evaluation of formulation effects on metered dose inhaler performan
处方对定量吸入器性能影响的综合评价
- 批准号:
9551975 - 财政年份:2013
- 资助金额:
$ 106.82万 - 项目类别:
相似海外基金
Dual-Wavelength Blue Light Irradiation for Improved Treatment of Staphylococcus aureus Infections
双波长蓝光照射改善金黄色葡萄球菌感染的治疗
- 批准号:
10724476 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别:
Novel therapeutics for treatment of catheter-associated UTI and depletion of the vaginal reservoir
治疗导管相关性尿路感染和阴道储库耗竭的新疗法
- 批准号:
10605022 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别:
Novel antimicrobials to combat Gram-negative bacteria
对抗革兰氏阴性菌的新型抗菌剂
- 批准号:
10888456 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别:
Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
- 批准号:
10674131 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别:
Host Directed Orynotide for MDR Gram Negative Bacterial Infections
宿主定向 Orynotide 用于治疗耐多药革兰氏阴性细菌感染
- 批准号:
10674221 - 财政年份:2023
- 资助金额:
$ 106.82万 - 项目类别: