Developing a novel class of peptide antibiotics targeting carbapenem-resistant Gram-negative organisms
开发一类针对碳青霉烯类耐药革兰氏阴性生物的新型肽抗生素
基本信息
- 批准号:10674131
- 负责人:
- 金额:$ 88.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAdvanced DevelopmentAmino AcidsAminoglycosidesAnimal ModelAnimalsAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteremiaBacteriaBiologyBlood CirculationCeftazidimeCellsCessation of lifeChemicalsClinicalClinical TrialsColistinCombating Antibiotic Resistant BacteriaDataDeveloping CountriesDevelopmentDrug KineticsEngineeringEpithelial CellsErythrocytesEscherichia coliEvaluationExhibitsFibroblastsFluoroquinolonesFutureGenerationsGoalsGram-Negative Bacterial InfectionsGrantHospitalsHost DefenseHumanIncidenceInfectionIntellectual PropertyInternationalKlebsiella pneumoniaeLeadLegal patentLeukocytesLifeLungLung infectionsMammalian CellMedicalMembraneModificationMolecular ConformationMulti-Drug ResistanceMultiple Bacterial Drug ResistanceMusNamesNational Institute of Allergy and Infectious DiseaseNon-Rodent ModelOrganismPathogenicityPeptide AntibioticsPeptidesPharmacodynamicsPharmacologyPolymyxin BPolymyxin ResistancePolymyxinsPositioning AttributePreclinical TestingPropertyProteinsPublic HealthRationalizationRattusReportingResearchResearch ProposalsResistanceResistance developmentRespiratory Tract InfectionsRodent ModelSafetySeriesStructure-Activity RelationshipSuperbugSystemTherapeuticTherapeutic AgentsTimeToxic effectTrademarkTreatment CostUnited StatesWorkacute toxicityantimicrobialantimicrobial drugantimicrobial peptidebacterial resistancebeta-Lactamasebeta-Lactamscarbapenem resistanceclinical applicationclinical developmentcommercializationcytotoxicitydesigndosagedrug candidatedrug discoveryeffective therapyemerging pathogenfightingimprovedinhibitorintravenous administrationlead candidatelead optimizationmicroorganismmouse modelnephrotoxicitynext generationnovelnovel antibiotic classnovel therapeuticspathogenpeptide drugpharmacokinetics and pharmacodynamicspharmacologicpre-clinicalpre-clinical researchpreclinical developmentprogramspublic health relevancerational designresistant Klebsiella pneumoniaeresistant strainstandard of careunnatural amino acidsvirtual
项目摘要
The alarming emergence of multidrug-resistant (MDR) pathogenic microorganisms worldwide and the lack of
next-generation portfolios of novel antimicrobials threaten human and public health. Therefore, it is a worldwide
priority to expedite the development of novel antimicrobial therapies to control MDR bacteria effectively. Natural
and synthetic antimicrobial peptides (AMPs) exhibit great potential as therapeutic agents because of their unique
modes of action in fast-killing bacteria through membrane permeation. However, several barriers to AMP
development limit its clinical application. This application aims to overcome current AMP limitations to develop a
safe and effective broad-spectrum antimicrobial against MDR Gram-negative bacterial infection. Our novel
peptide therapeutics A4-AMP antibiotics (A4X) is a new generation of computationally engineered AMPs
(eAMPs) derived from the antimicrobial motif, alpha-4, of a natural human host defense protein SPLUNC1 with
negligible toxicity to mammalian cells. The extensive results from our studies demonstrate that our current lead
candidate displays superior antibacterial activity to standard of care (SoC) antibiotics in over 500 clinical isolates
of difficult-to-kill MDR Gram-negative pathogens obtained from hospitals and the CDC & FDA Antibiotic
Resistance Isolate Bank. Our A4X lead also has a much lower tendency to develop resistance than SoC
antibiotics. The A4X lead is safe and well tolerated when intravenously administered to mice and rats, with a four
times higher maximum tolerated dosage than colistin, a last resort antibiotic, in mouse blood circulation.
Moreover, we have demonstrated the efficacy of the A4X lead against Klebsiella pneumoniae and
Acinetobacter baumannii in mouse models of bacteremia and respiratory infection. In this project, we will carry
out preclinical and pre-IND non-clinical development activities and perform structure-activity relationship (SAR)
based optimization of the current A4X lead to advance the preclinical development and to determine the clinical
utility. We will extensively examine the safety, pharmacokinetic/pharmacodynamic, and efficacy of these novel
antimicrobial agents in small and large animals of the most effective A4X. The targeting bacteria are the MDR
strains of Gram-negative species on the CDC's urgent pathogen threats list and WHO's the most critical global
priority 1 pathogens list (carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumonia, and Escherichia
coli) and, including resistant strains to colistin. This proposal targets the urgent unmet global medical need for
novel antibiotics and addresses the U.S. National Action Plan for Combating Antibiotic-Resistant Bacteria in a
timely manner. Successful completion of these studies will have an enormous impact on developing a novel
class of antibiotics capable of fighting MDR "superbugs."
全球多种耐药性(MDR)致病微生物的令人震惊的出现以及缺乏
新型抗微生物的下一代投资组合威胁着人类和公共卫生。因此,它是全球
优先考虑开发新型抗菌疗法以有效控制MDR细菌的优先事项。自然的
和合成抗菌肽(AMP)作为治疗剂具有巨大的潜力,因为它们的独特
通过膜渗透,快速杀死细菌的作用模式。但是,AMP的几个障碍
开发限制其临床应用。该应用程序旨在克服当前的AMP限制,以开发
针对MDR革兰氏阴性细菌感染的安全有效的广谱抗菌抗菌。我们的小说
肽疗法A4AMP抗生素(A4X)是新一代的计算安排
(EAMP)源自天然人类宿主防御蛋白Splunc1的抗菌基序Alpha-4,
对哺乳动物细胞的毒性微不足道。我们研究的广泛结果表明,我们目前的领导
候选人在500多个临床分离株中显示出对护理标准(SOC)抗生素的优质抗菌活性
从医院和CDC&FDA抗生素获得的难以杀死的MDR革兰氏阴性病原体
电阻孤立银行。我们的A4X线索也比SOC的趋势要低得多
抗生素。当静脉内给小鼠和大鼠施用时,A4X铅是安全且耐受性的,四个
在小鼠血液循环中,最大耐受剂量的最大耐受剂量比colistin(最后一次度假抗生素)高。
此外,我们已经证明了A4X铅对Klebsiella肺炎和
细菌和呼吸道感染的小鼠模型中的鲍曼尼杆菌。在这个项目中,我们将携带
消除临床前和预性非临床发展活动并执行结构活性关系(SAR)
基于当前A4X的优化导致临床前发展并确定临床
公用事业。我们将广泛研究这些新型的安全性,药代动力学/药效学和功效
最有效A4X的小动物和大型动物中的抗菌剂。靶向细菌是MDR
CDC紧急病原体威胁清单上的革兰氏阴性物种菌株,谁是最关键的全球
优先1病原体清单(抗碳青霉菌的baumannii,克雷伯氏菌和肺炎
大肠杆菌),包括抗colistin的抗性菌株。该提案针对紧迫的全球医疗需求
新颖的抗生素并探讨了美国国家行动计划,用于打击抗生素耐药细菌
及时的方式。这些研究的成功完成将对发展新颖的影响产生巨大影响
一类抗生素能够与MDR作斗争的“超级细菌”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuanpu Peter Di其他文献
Yuanpu Peter Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuanpu Peter Di', 18)}}的其他基金
Cellular and molecular mechanisms of e-cigarette vaping-induced acute lung injury
电子烟引起急性肺损伤的细胞和分子机制
- 批准号:
10690279 - 财政年份:2022
- 资助金额:
$ 88.07万 - 项目类别:
Novel antimicrobial agents to overcome antibiotic resistant Pseudomonas and MRSA respiratory infection
新型抗菌药物可克服抗生素耐药性假单胞菌和 MRSA 呼吸道感染
- 批准号:
10204921 - 财政年份:2017
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7842160 - 财政年份:2009
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8307626 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7902103 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8316177 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8289968 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8119055 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
7684085 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
Epithelial PLUNC as a determinant of Airway Mucosal Antimicrobial Activity
上皮 PLUNC 作为气道粘膜抗菌活性的决定因素
- 批准号:
8113671 - 财政年份:2008
- 资助金额:
$ 88.07万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Innovative Strategies to Combat Antibiotic-resistant Infections
对抗抗生素耐药性感染的创新策略
- 批准号:
10162823 - 财政年份:2021
- 资助金额:
$ 88.07万 - 项目类别:
Innovative Strategies to Combat Antibiotic-resistant Infections
对抗抗生素耐药性感染的创新策略
- 批准号:
10352464 - 财政年份:2021
- 资助金额:
$ 88.07万 - 项目类别:
Metabolomics for Determining Mechanism of Action of Botanical Medicines
用于确定植物药作用机制的代谢组学
- 批准号:
10229685 - 财政年份:2021
- 资助金额:
$ 88.07万 - 项目类别:
Innovative Strategies to Combat Antibiotic-resistant Infections
对抗抗生素耐药性感染的创新策略
- 批准号:
10577797 - 财政年份:2021
- 资助金额:
$ 88.07万 - 项目类别:
Metabolomics for Determining Mechanism of Action of Botanical Medicines
用于确定植物药作用机制的代谢组学
- 批准号:
10401795 - 财政年份:2021
- 资助金额:
$ 88.07万 - 项目类别: