Structural Analysis of Membrane Tethering and Fusion Proteins
膜束缚和融合蛋白的结构分析
基本信息
- 批准号:10369677
- 负责人:
- 金额:$ 37.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureAttentionAwarenessBindingBiological ProcessCarrier ProteinsCell membraneCellsChimeric ProteinsClosure by clampCoated vesicleCollaborationsComplexCoupledCryoelectron MicroscopyDiseaseEukaryotic CellExocytosisFoundationsFutureGoalsIn VitroInfectionLassoLipidsLysosomesMediatingMembraneMembrane FusionModificationMolecular ChaperonesMutationNeuronsOrganellesPathway interactionsPatternProcessProtein SortingsProteinsProteomicsReactionReportingResearchRoleSNAP receptorSorting - Cell MovementStructureSurfaceSynapsesSystemTherapeutic InterventionThermodynamicsVacuoleVesicleWorkX-Ray CrystallographyYeastsbasebiochemical toolsdesignexperimental studyfallsflexibilityhuman diseaseimprovedin vivolaser tweezerlate endosomemembrane assemblynanomachineneurotransmitter releaseprogramsprotein functionreconstitutionsingle moleculesyntaxin binding protein 1traffickingvesicle transportvirtual
项目摘要
PROJECT SUMMARY / ABSTRACT
The traffic patterns established by transport vesicles are of fundamental importance for protein localization,
modification, and function within eukaryotic cells. Cargo transported by these vesicles is delivered through the
fusion of the vesicle with the membrane of a target organelle or, in the case of exocytosis, the plasma
membrane. Membrane fusion is executed by SNARE complexes that bridge the vesicle and target
membranes. The formation of these complexes requires that four different SNARE proteins, anchored in two
different membranes, undergo a coupled folding and assembly reaction during which the SNARE motifs zipper
up into a parallel four-helix bundle. This complicated process is inefficient in vitro, and is certain to be even
more challenging in vivo, where it must compete with the formation of various non-cognate and off-pathway
SNARE complexes. We hypothesize that SNARE complex assembly reactions in the cell are orchestrated by
`topologically aware' chaperones called multisubunit tethering complexes (MTCs). We furthermore propose
that the key task of catalyzing four-helix bundle formation falls to the Sec1/Munc18 (SM) proteins, working
together with—and sometimes as integral subunits of—the MTCs. Therefore, the overarching goal of this
proposal is to achieve an improved structural and mechanistic understanding of MTC and SM function,
especially as they relate to one another, in the assembly of membrane fusogenic SNARE complexes. Aim 1 is
focused on SM proteins with the goal of characterizing their precise catalytic role in SNARE complex
assembly. Principally through the use of X-ray crystallography and complementary single-molecule optical
tweezers experiments, we will determine the structures and thermodynamic stabilities of SM-bound SNARE
assembly intermediates. In Aims 2 and 3, we broaden our focus to include MTCs. In Aim 2, we will investigate
the simplest known MTC, the yeast Dsl1 complex, and its interactions with SNAREs and the SM protein Sly1.
Cryo-EM studies of arrested SNARE assembly intermediates in complex with both the Dsl1 complex and Sly1
are designed to reveal how the Dsl1 complex and Sly1 collaborate. In Aim 3, we will turn our attention to the
homotypic fusion and vacuole protein sorting (HOPS) complex, a well-studied MTC that is required for fusion at
late endosomes and lysosomes/vacuoles. Importantly, HOPS contains an SM protein as an integral subunit,
making it an ideal system for studying MTC–SM collaboration. In order to elucidate how HOPS organizes
SNAREs for assembly, we will expand our ongoing cryo-EM studies of HOPS to include bound SNAREs and
SNARE assembly intermediates. Overall, this research program has the potential to revolutionize our
mechanistic understanding of chaperoned SNARE complex assembly, with potentially profound implications for
elucidating diverse biological processes and their subversion during infection and disease. While the proposed
work is more fundamental than applied, it will lay a foundation for efforts to manipulate trafficking and other
processes entailing membrane fusion, with potential future applications to therapeutic intervention.
项目摘要 /摘要
运输蔬菜建立的交通模式对于蛋白质定位至关重要,
修饰和真核细胞内的功能。这些蔬菜运输的货物是通过
囊泡与靶细胞器的膜融合或在胞吞作用的情况下是血浆
膜。膜融合是由桥接囊泡和靶的军鼓复合物执行的
机制。这些配合物的形成要求四种不同
不同的机制,经历了耦合的折叠和装配反应,在此过程中,圈圈图案拉链
进入平行的四螺旋捆。这个复杂的过程在体外效率低下,肯定是
在体内的更多挑战,它必须与各种非认知和非同志的形成竞争
军鼓复合物。我们假设细胞中的圈套复合物组装反应由
“拓扑意识到”的伴侣称为多亚基链接复合物(MTC)。我们进一步提议
催化四螺旋束组的关键任务落到Sec1/munc18(SM)蛋白质上
以及MTC的组成子单位,有时也是MTC的组成子单位。因此,这是总体目标
建议是为了改善对MTC和SM功能的结构和机械理解,
尤其是当它们相互关联时,在膜融合式圈圈复合物的组装中。目标1是
专注于SM蛋白,目的是表征其在SNARE Compeffer中的精确催化作用
集会。主要通过使用X射线晶体学和完成单分子光学
Tweezers实验,我们将确定SM结合SNARE的结构和热力学系统
组装中间体。在目标2和3中,我们将重点扩大到包括MTC。在AIM 2中,我们将调查
最简单的MTC,酵母DSL1复合物及其与SNARES和SM蛋白Sly1的相互作用。
与DSL1复合物和SLY1均具有捕获的圈套组装中间体的冷冻EM研究
旨在揭示DSL1复合物和SLY1的合作方式。在AIM 3中,我们将把注意力转移到
同型融合和吸尘蛋白分选(HOPS)复合物,这是一种经过良好研究的MTC,是融合所需的
内体晚期和溶酶体/液泡。重要的是,啤酒花包含SM蛋白作为整体亚基,
使其成为研究MTC – SM协作的理想系统。为了阐明啤酒花如何组织
用于组装的圈套,我们将扩展我们正在进行的啤酒花的冷冻EM研究,以包括绑定的贪食和
军鼓装配中间体。总体而言,该研究计划有可能改变我们的
对Chaineeroned的SNARE COMPLECT组装的机械理解,对
阐明潜水员生物学过程及其在感染和疾病期间的颠覆。而建议
工作比应用的基础更为基础,它将为操纵贩运和其他的努力奠定基础
过程需要膜融合,并在治疗干预中潜在的未来应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDERICK M HUGHSON其他文献
FREDERICK M HUGHSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDERICK M HUGHSON', 18)}}的其他基金
Manipulating Quorum Sensing to Control Bacterial Pathogenicity
操纵群体感应来控制细菌致病性
- 批准号:
8435940 - 财政年份:2012
- 资助金额:
$ 37.53万 - 项目类别:
Structure-Function Analysis of AI-2 Quorum Sensing
AI-2群体感应的结构功能分析
- 批准号:
8112157 - 财政年份:2010
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Golgi Trafficking Proteins
高尔基体运输蛋白的结构分析
- 批准号:
6919577 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Membrane Tethering and Fusion Proteins
膜束缚和融合蛋白的结构分析
- 批准号:
10210474 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Membrane Tethering and Fusion Proteins
膜束缚和融合蛋白的结构分析
- 批准号:
10579923 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Golgi Trafficking Proteins
高尔基体运输蛋白的结构分析
- 批准号:
7192514 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Membrane Tethering and Fusion Proteins
膜束缚和融合蛋白的结构分析
- 批准号:
10387703 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Golgi Trafficking Proteins
高尔基体运输蛋白的结构分析
- 批准号:
8665435 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
Structural Analysis of Golgi Trafficking Proteins
高尔基体运输蛋白的结构分析
- 批准号:
8059674 - 财政年份:2005
- 资助金额:
$ 37.53万 - 项目类别:
相似国自然基金
人机共驾模式下驾驶人监管注意力弱化-恢复规律与调控机理
- 批准号:52302425
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
逆全球化下跨国企业动态能力形成的微观机理研究:高管注意力配置视角
- 批准号:72302220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
注意力感知驱动的车载多模态传感器在线协同校正
- 批准号:42301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于两阶段注意力深度学习方法的系统性金融风险测度与预警研究
- 批准号:72301101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: Computer Vision Algorithms to Detect Tics In Patients with Tourette Syndrome
SCH:用于检测抽动秽语综合征患者抽动的计算机视觉算法
- 批准号:
10817272 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
A Modular Framework for Data-Driven Neurogenetics to Predict Complex and Multidimensional Autistic Phenotypes
数据驱动神经遗传学预测复杂和多维自闭症表型的模块化框架
- 批准号:
10826595 - 财政年份:2023
- 资助金额:
$ 37.53万 - 项目类别:
Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
- 批准号:
10612464 - 财政年份:2022
- 资助金额:
$ 37.53万 - 项目类别:
Massively Parallel Characterization of Cell-type and Context Specific Regulatory Risk Elements Across Psychiatric Disorders in a Stem Cell Model of Neurodevelopment
神经发育干细胞模型中精神疾病细胞类型和背景特定监管风险因素的大规模并行表征
- 批准号:
10610724 - 财政年份:2022
- 资助金额:
$ 37.53万 - 项目类别:
Computerized platform for interactive annotation and topological characterization of tumor associated vasculature for predicting response to immunotherapy in lung cancer
用于肿瘤相关脉管系统的交互式注释和拓扑表征的计算机化平台,用于预测肺癌免疫治疗的反应
- 批准号:
10424637 - 财政年份:2022
- 资助金额:
$ 37.53万 - 项目类别: