Center for Advanced Multi-Omic Characterization of Cancer
癌症高级多组学表征中心
基本信息
- 批准号:10439370
- 负责人:
- 金额:$ 124万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAffinityAreaAutomobile DrivingBasic ScienceBiochemical ProcessBioinformaticsBiological AssayBiological ModelsCancer BiologyCancer DiagnosticsCatalogsCell LineCellsCenter for Translational Science ActivitiesClassificationClinicalColon CarcinomaComb animal structureCommunitiesComplementDataData AnalysesDefectDevelopmentDiseaseDrug TargetingEndometrial CarcinomaGenomeGenomicsGenotypeGlioblastomaGuidelinesHumanInformaticsInfrastructureInternationalLabelLaboratoriesLinkLiquid ChromatographyMalignant NeoplasmsMalignant neoplasm of ovaryMass Spectrum AnalysisMeasurementMetabolicMetabolic PathwayMetalsMethodsMissionMolecularMonitorMutationNational Cancer InstituteOrganoidsOutcomePacific NorthwestPathway AnalysisPerformancePhenotypePhosphorylationPost Translational Modification AnalysisPost-Translational Protein ProcessingPrevention strategyPrognostic MarkerProteinsProteomeProteomicsPublishingReactionRoleRouteSample SizeSamplingSeriesSerousSignal PathwaySignal TransductionSpecimenTechnologyThe Cancer Genome AtlasTherapeutic InterventionValidationWorkadvanced analyticsbasecancer genomecancer typeclinical centercohortdata acquisitiondata integrationdata qualitydiagnostic strategyexpectationexperiencefunctional statusgenomic datagenomic profileshuman genome sequencingimprovedinformatics toolinsightinstrumentationlipidomemeetingsmetabolomemetabolomicsmultidisciplinarymultiple omicsnanoscalenew technologypatient derived xenograft modelpersonalized medicinephenomepre-clinicalprecision oncologyprospectiveprotein degradationprotein protein interactionproteogenomicsstable isotopesuccesstandem mass spectrometrytechnology developmenttherapeutic targettranscriptomicstranslational applicationstranslational potentialtreatment strategytumortumor behaviortumor heterogeneityworking group
项目摘要
PROJECT SUMMARY
The overall objective of the PNNL Proteome Characterization Center (PCC) is to comprehensively characterize
human tumor samples provided by the National Cancer Institute (NCI), and to integrate the multi-omic
measurements to support improved understanding of the molecular changes that characterize cancer, and do
so in the context of clinical outcome. PNNL has participated in the NCI’s Clinical Proteomic Tumor Analysis
Consortium (CPTAC) as a PCC for the past ten years, with responsibility for comprehensive proteogenomic
characterization of high-grade serous ovarian, colon, and endometrial cancers, and glioblastoma. The planned
PNNL PCC will build on those achievements to extend and advance the CPTAC mission of comprehensive
proteogenomic characterization of human cancers to additional cancer types, meeting or exceeding CPTAC
key expectations or requirements for sample throughput, coverage, sample size, and data quality. Utilizing an
advanced analytical platform, PNNL plans to add analysis of both acetylome and ubiquitinome to the
phosphoproteome of prospectively collected human tumors, to betters illuminate key biochemical processes
related to protein-protein interactions, protein degradation, and signal transduction. We will also complement
the core proteome and post-translational modification (PTM)-ome analysis with global metabolome and
lipidome analysis, as well as selected data driven spatial or single-cell proteomics analysis. This will provide
additional critical insights on potential metabolic vulnerabilities and tumor heterogeneity as well as
microenvironment contributions. This multi-omic analysis strategy will also be applied to preclinical samples,
such as cell lines, organoids and patient-derived xenografts. We will also develop targeted mass spectrometric
assays using input from the CPTAC consortium, and particularly the Proteogenomic Data Analysis Centers
(PGDACs), to prioritize targets for further exploring important mechanistic proteomic changes in independent
cohort(s). Throughout this work our measurements will benefit from further performance increases (e.g.,
sensitivity and throughput) based on refining, validating and implementing developments from both PNNL and
the other CPTAC Centers.
The PNNL PCC will identify promising cancer signatures and signaling networks through proteomic and
metabolomic analysis of human biospecimens and relevant preclinical samples for 2-3 cancer types selected
by the CPTAC, using state-of-the-art liquid chromatography-tandem mass spectrometry instrumentation, highly
multiplexed isobaric mass-tag labeling (TMT 16-plex), and integrated sample workflows, as well as additional
advanced metabolomic, spatial and single-cell proteomic planforms, at a throughput of 300 samples per year.
We will also explore mechanistically important proteomic changes in human specimens and model systems
using cutting-edge targeted proteomic platforms, analytically validated and highly multiplexed targeted assays,
and workflows meeting the CPTAC Tier 2 assay guidelines. Two hundred highly specific, multiplexed targeted
proteomics assays will be developed and used for measurements in 300 samples each year. The PNNL PCC
will accomplish both unbiased and targeted multi-omic characterization of cancers in conjunction with
improving the depth, throughput and quality of both unbiased and targeted data generated by implementing
and deploying relevant new technologies, such as nanoscale PTM, metabolomic analysis, and single-cell
proteomics analysis.
The PNNL PCC will work closely with the other PCCs, PGDACs and PTRCs in the CPTAC network on data
integration and bioinformatics analysis, as well as translational applications.
项目摘要
PNNL蛋白质组表征中心(PCC)的总体目标是全面表征
国家癌症研究所(NCI)提供的人类肿瘤样本,并整合多OMIC
测量以支持对表征癌症的分子变化的改进理解,并做
因此,在临床结果的背景下。 PNNL参加了NCI的临床蛋白质组学分析
财团(CPTAC)在过去十年中作为PCC,负责全面的蛋白质组学
高级浆液卵巢,结肠和子宫内膜癌和胶质母细胞瘤的表征。计划
PNNL PCC将基于这些成就,以扩展和推进CPTAC的全面使命
人类癌症对其他癌症类型的蛋白质特征,满足或超过CPTAC
样品吞吐量,覆盖范围,样本量和数据质量的关键期望或要求。利用一个
PNNL高级分析平台计划将乙酰基组和泛素组的分析添加到
前瞻性收集的人类肿瘤的磷酸蛋白质组,以更好地阐明关键的生化过程
与蛋白质 - 蛋白质相互作用,蛋白质降解和信号转导有关。我们还将完成
全球代谢组和
Lipidome分析以及选定的数据驱动空间或单细胞蛋白质组学分析。这将提供
对潜在的代谢脆弱性和肿瘤异质性的其他关键见解以及
微环境贡献。这种多词分析策略也将应用于临床前样本,
例如细胞系,器官和患者衍生的Xenographictics。我们还将开发目标质谱
使用CPTAC财团的输入,尤其是蛋白质数据分析中心的测定
(PGDACS),优先考虑目标,以进一步探索独立的重要机械蛋白质组学变化
队列(S)。通过这项工作,我们的测量将受益于进一步的绩效提高(例如,
灵敏度和吞吐量)基于PNNL和
其他CPTAC中心。
PNNL PCC将通过蛋白质组学和
针对2-3种癌症类型的人类生物测量和相关临床前样品的代谢组分析
通过CPTAC,使用最先进的液相色谱串联质谱仪器,高度
多路复用的同质质量标签标签(TMT 16-plex)和集成的样品工作流以及其他
高级代谢组,空间和单细胞蛋白质组学计划,每年300个样品的吞吐量。
我们还将探索人类标本和模型系统中机械上重要的蛋白质组学变化
使用尖端的靶向蛋白质组学平台,经过分析验证且高度多重的目标测定法
以及符合CPTAC Tier 2分析指南的工作流程。两百个高度特定的多重目标
蛋白质组学测定将开发并用于每年300个样品的测量。 PNNL PCC
将完成癌症的公正和靶向多摩变表征
改善通过实施而产生的无偏见和目标数据的深度,吞吐量和质量
并部署相关的新技术,例如纳米级PTM,代谢组分分析和单细胞
蛋白质组学分析。
PNNL PCC将与数据网络中的其他PCC,PGDAC和PTRC紧密合作。
集成和生物信息学分析以及翻译应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Liu其他文献
Tao Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Liu', 18)}}的其他基金
Center for Advanced Multi-Omic Characterization of Cancer
癌症高级多组学表征中心
- 批准号:
10631927 - 财政年份:2022
- 资助金额:
$ 124万 - 项目类别:
Center for Advanced Multi-Omic Characterization of Cancer
癌症高级多组学表征中心
- 批准号:
10755578 - 财政年份:2022
- 资助金额:
$ 124万 - 项目类别:
Targeted therapy against TERT oncogene-rearranged neuroblastoma
TERT癌基因重排神经母细胞瘤的靶向治疗
- 批准号:
10452641 - 财政年份:2021
- 资助金额:
$ 124万 - 项目类别:
Targeted therapy against TERT oncogene-rearranged neuroblastoma
TERT癌基因重排神经母细胞瘤的靶向治疗
- 批准号:
10287498 - 财政年份:2021
- 资助金额:
$ 124万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 124万 - 项目类别:
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 124万 - 项目类别:
Unraveling the functional diversity of B cells in health and disease
揭示 B 细胞在健康和疾病中的功能多样性
- 批准号:
10726375 - 财政年份:2023
- 资助金额:
$ 124万 - 项目类别:
Programming Long-lasting Immunity to Coronaviruses (PLUTO)
对冠状病毒进行持久免疫编程 (PLUTO)
- 批准号:
10549475 - 财政年份:2023
- 资助金额:
$ 124万 - 项目类别: