Unraveling the functional diversity of B cells in health and disease
揭示 B 细胞在健康和疾病中的功能多样性
基本信息
- 批准号:10726375
- 负责人:
- 金额:$ 45.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-02 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAffinityAlgorithm DesignAlgorithmsAntibodiesAntibody AffinityArchitectureAutoimmunityB-Cell Antigen ReceptorB-LymphocytesBiologicalCell CompartmentationCell modelCellsClinicalCollaborationsCommunicable DiseasesComplexComputational TechniqueComputational algorithmComputing MethodologiesDataData SetDevelopmentDevelopmental ProcessDimensionsDiseaseFunctional disorderGene ExpressionGenetic TranscriptionGut associated lymphoid tissueHealthHeterogeneityHistologicHistologyHypersensitivityImageImmuneImmune responseImmune signalingImmune systemImmunoglobulin Class SwitchingImmunoglobulin Constant RegionImmunoglobulin Switch RecombinationImmunologyIndividualInfectionKnowledgeLocationLymphoid TissueMapsMeasuresMediatingMethodsModelingModernizationMolecularOutputPathway interactionsPhenotypeRNAResearchResearch PersonnelRoleSamplingSliceStainsSystems BiologyTechniquesTechnologyTimeTissuesVaccinationVaccinesWorkbiological systemsbiomarker identificationcomplex datacomputerized toolsimprovedinnovationinsightnovelpredictive markerprogramsresponsesingle-cell RNA sequencingtherapeutic targettooltranscriptomicsvaccine response
项目摘要
The role of B cells in infectious disease, autoimmunity, and allergy is critical. Modern sequencing
technologies, such as single-cell RNA sequencing (scRNAseq) and spatial transcriptomics, have
emerged as powerful techniques for studying the transcriptional states of individual B cells in a variety
of biological contexts. These technologies generate massive amounts of complex data that
necessitate use of powerful, sophisticated computational methods. The analysis of such data is
hampered by numerous technical and biological biases embedded in the data. In scRNAseq, for
example, the non-uniform capture of cells along some developmental trajectory, as well as the
expression of multiple concurrent transcriptional programs, pose a challenge to current single cell
clustering and trajectory inference methods. These biases are exacerbated when studying B cell
compartments with complex dynamics, such as those found in lymphoid tissues. To address these
issues, we propose a novel toolbox of algorithms for modeling B cell activity that combines prior,
validated biological knowledge with computational algorithm design. In Aim 1, we develop tools to
elucidate temporal B cell developmental processes. And in Aim 2, we develop tools to elucidate B cell
spatial transcriptional programs. In Aim 3, apply our tools to a variety of important clinical scenarios,
such as mapping the immune correlates of higher affinity antibodies and characterizing the
heterogeneity observed in IBD. Overall, our research will create much-needed computational tools for
analyzing immune signals in scRNAseq and spatial transcriptomics data, as well as show that
incorporating prior knowledge greatly improves the ability of computational algorithms to reveal the
full spectrum of immune system changes that occur in response to vaccination, infection, and
immune-mediated diseases.
B 细胞在传染病、自身免疫和过敏中的作用至关重要。现代测序
单细胞 RNA 测序 (scRNAseq) 和空间转录组学等技术
成为研究各种个体 B 细胞转录状态的强大技术。
的生物学背景。这些技术产生大量复杂的数据
需要使用强大、复杂的计算方法。对此类数据的分析是
数据中嵌入的许多技术和生物学偏见阻碍了这一过程。在 scRNAseq 中,对于
例如,沿着某些发育轨迹对细胞的不均匀捕获,以及
多个并发转录程序的表达,对当前的单细胞提出了挑战
聚类和轨迹推断方法。研究 B 细胞时这些偏差会加剧
具有复杂动力学的隔室,例如在淋巴组织中发现的隔室。为了解决这些
问题,我们提出了一种新的算法工具箱,用于建模 B 细胞活动,该工具箱结合了先前的、
通过计算算法设计验证生物学知识。在目标 1 中,我们开发工具来
阐明颞 B 细胞的发育过程。在目标 2 中,我们开发工具来阐明 B 细胞
空间转录程序。在目标 3 中,将我们的工具应用于各种重要的临床场景,
例如绘制更高亲和力抗体的免疫相关性并表征
IBD 中观察到的异质性。总的来说,我们的研究将为以下领域创造急需的计算工具:
分析 scRNAseq 和空间转录组数据中的免疫信号,并表明
结合先验知识极大地提高了计算算法揭示问题的能力
因疫苗接种、感染和感染而发生的全方位免疫系统变化
免疫介导的疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TRIBAL: Tree Inference of B cell Clonal Lineages.
TRIBAL:B 细胞克隆谱系的树推断。
- DOI:10.1101/2023.11.27.568874
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Weber,LeahL;Reiman,Derek;Roddur,MrinmoyS;Qi,Yuanyuan;El-Kebir,Mohammed;Khan,AlyA
- 通讯作者:Khan,AlyA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aly Azeem Khan其他文献
Geometric Analysis of Cross-Linkability for Protein Fold Discrimination
用于蛋白质折叠区分的交联性的几何分析
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
S. Potluri;Aly Azeem Khan;A. Kuzminykh;Janusz M. Bujnicki;Alan M. Friedman;C. Bailey - 通讯作者:
C. Bailey
Aly Azeem Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 45.04万 - 项目类别:
Understanding antibody responses and defining correlates of protection for endemic and pandemic coronavirus strains
了解抗体反应并定义地方性和大流行性冠状病毒株保护的相关性
- 批准号:
10549479 - 财政年份:2023
- 资助金额:
$ 45.04万 - 项目类别:
Programming Long-lasting Immunity to Coronaviruses (PLUTO)
对冠状病毒进行持久免疫编程 (PLUTO)
- 批准号:
10549475 - 财政年份:2023
- 资助金额:
$ 45.04万 - 项目类别:
mRNA Delivery of a Panel of Single-Domain Antibodies for Combinatorial Deciphering of Therapeutic Targets for Covid-19 Related Cytokine Release Syndrome
一组单域抗体的 mRNA 递送,用于组合破译 Covid-19 相关细胞因子释放综合征的治疗靶点
- 批准号:
10383635 - 财政年份:2022
- 资助金额:
$ 45.04万 - 项目类别: