Mechanisms of Rickettsia invasion, intracellular survival, and actin-based motility
立克次体侵袭、细胞内存活和基于肌动蛋白的运动的机制
基本信息
- 批准号:9615323
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAddressAutomobile DrivingAutophagocytosisBacteriaBacterial PhysiologyCell Surface ReceptorsCellsCellular StructuresCellular biologyCytoskeletonCytosolDiagnosisDiagnosticDiseaseFeverFundingGenesGenomeGrowthHumanIn VitroInfectionInvadedKnowledgeLeadMediatingMembraneMembrane ProteinsMolecularMusMutagenesisMutationNutrientPathogenesisPhagosomesPhasePhenotypePhospholipasePlayPolymersProcessProteinsPublishingRickettsiaRickettsia InfectionsRoleStudy modelsSurface AntigensTestingTyphusVirulenceWorkbacterial geneticsbasecell motilityhuman diseaseimprovedin vivoinnovationmacrophagemouse modelmutantnovel strategiespathogenpolymerizationreceptorubiquitin ligaseunpublished works
项目摘要
PROJECT SUMMARY/ABSTRACT
The Rickettsiae are obligate intracellular bacterial pathogens that cause serious diseases, such as spotted
fever and typhus. We study the model spotted fever group (SFG) species Rickettsia parkeri, which causes an
eschar-associated human rickettsiosis, is experimentally tractable, and has emerging mouse models of
pathogenesis, making it ideal for revealing molecular mechanisms of SFG Rickettsia infection and virulence.
During infection, SFG Rickettsia invade host cells by mobilizing the actin cytoskeleton, escape from the
phagosome into the cytosol, replicate while avoiding degradation by autophagy, and harness actin
polymerization to promote intracellular motility and cell-cell spread. However, there are fundamental gaps in
our knowledge of the molecular mechanisms by which SFG Rickettsia exploit or disrupt host cell components
to promote their infection cycle. To bridge these gaps, in the current funding period we have pioneered an
innovative combination of bacterial genetics and host cell biology to identify key Rickettsia factors that
manipulate host cells. In unpublished work, we discovered that outer membrane protein OmpB is crucial for
both invasion and avoidance of autophagy. We also observed that patatin-like phospholipase Pat1 plays a role
in phagosome escape and/or autophagy evasion. Additionally, in published work, we demonstrated that
Rickettsia use two actin-polymerizing surface proteins to direct sequential phases of motility – with RickA
driving early motility and surface cell antigen Sca2 driving late motility. However, key outstanding questions
remain, including: How do Rickettsia engage host receptors to promote invasion? How do Rickettsia degrade
membranes during phagosome escape or inhibit membrane engulfment to avoid autophagy? And how do
Rickettsia coordinate and use two actin assembly factors in distinct phases of motility? Our preliminary and
published findings suggest the overall hypothesis that OmpB, Pat1, RickA, and Sca2 are multifunctional
proteins that mobilize or disrupt host cell components and play a crucial role in infection in vivo. This
hypothesis will be tested in three Aims focused on uncovering the mechanisms through which OmpB, Pat1,
RickA, and Sca2 influence invasion, intracellular survival, and motility. The Aims are to: (1) define the role of
Rickettsia surface protein OmpB in invasion and intracellular survival; (2) investigate the role of Pat1
phospholipase in phagosome escape and intracellular survival; and (3) determine how and why Rickettsia use
two distinct actin-based motility mechanisms. The proposed studies will advance the field by revealing crucial
molecular mechanisms used by Rickettsia and other pathogens to manipulate host cells and the importance of
these mechanisms to infectivity. Our studies may also lead to improved diagnostics and treatments for
rickettsial and other infections.
项目摘要/摘要
立克西亚是义务引起严重疾病的义务细胞内细菌病原体,例如发现
发烧和斑疹伤寒。我们研究模型发现发烧组(SFG)物种立克帕克里(Rickettsia Parkeri),这导致
与埃斯查(Eschar)相关的人体力学,在实验上是可进行的,并且具有新兴的小鼠模型
发病机理,使其成为揭示SFG人力素感染和病毒的分子机制的理想选择。
在感染期间,SFG人力素症通过动员肌动蛋白细胞骨架侵入宿主细胞,逃脱
吞噬入细胞质的吞噬体,在避免自噬降解的同时复制,并采用肌动蛋白
聚合以促进细胞内运动和细胞细胞扩散。但是,有根本的差距
我们对SFG人力素剥削或破坏宿主细胞成分的分子机制的了解
促进其感染周期。为了弥合这些差距,在当前的资金期间,我们开创了
细菌遗传学和宿主细胞生物学的创新组合,以识别重力体力学因素
操纵宿主细胞。在未发表的工作中,我们发现外膜蛋白OMPB对
入侵和避免自噬。我们还观察到patatin样磷脂酶PAT1起作用
在吞噬体逃生和/或自噬进化中。此外,在已发表的工作中,我们证明了
人力病患者使用两种肌动蛋白聚合表面蛋白来引导运动的顺序阶段 - ricka
驱动早期运动能力和表面细胞抗原SCA2驱动晚期运动。但是,关键的杰出问题
保留,包括:Rickettsia如何让主持人接收者促进入侵?人力车如何降解
吞噬体逃生期间的膜或抑制膜吞噬以避免自噬?以及如何
人力车协调并在运动的不同阶段使用两个肌动蛋白组装因子?我们的初步和
已发表的发现表明了总体假设,即OMPB,PAT1,Ricka和Sca2是多功能的
动员或破坏宿主细胞成分并在体内感染中起关键作用的蛋白质。这
假设将以三个目的进行检验,旨在发现OMPB,PAT1,
Ricka和Sca2影响入侵,细胞内存活和运动。目的是:(1)定义
立克表面蛋白OMPB在入侵和细胞内存活中; (2)调查PAT1的作用
吞噬体逃生和细胞内存活中的磷脂酶; (3)确定立克的方法以及为什么使用
两种不同的基于肌动蛋白的运动机制。拟议的研究将通过揭示至关重要
立克和其他病原体使用的分子机制来操纵宿主细胞以及
这些机制是感染的。我们的研究也可能导致改进的诊断和治疗方法
立克和其他感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew D Welch其他文献
Matthew D Welch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew D Welch', 18)}}的其他基金
Exploring the role of type I interferon in Rickettsia pathogenesis
探讨I型干扰素在立克次体发病机制中的作用
- 批准号:
9888303 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Exploring the role of type I interferon in Rickettsia pathogenesis
探讨I型干扰素在立克次体发病机制中的作用
- 批准号:
9764949 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Microbial mobilization of the actin cytoskeleton
肌动蛋白细胞骨架的微生物动员
- 批准号:
9912779 - 财政年份:2018
- 资助金额:
$ 38.18万 - 项目类别:
Microbial mobilization of the actin cytoskeleton
肌动蛋白细胞骨架的微生物动员
- 批准号:
10623626 - 财政年份:2018
- 资助金额:
$ 38.18万 - 项目类别:
Microbial mobilization of the actin cytoskeleton
肌动蛋白细胞骨架的微生物动员
- 批准号:
10395934 - 财政年份:2018
- 资助金额:
$ 38.18万 - 项目类别:
Mechanisms of Rickettsia invasion, intracellular survival, and actin-based motility
立克次体侵袭、细胞内存活和基于肌动蛋白的运动的机制
- 批准号:
10461986 - 财政年份:2014
- 资助金额:
$ 38.18万 - 项目类别:
Roles for host cytoskeletal, cell adhesion and membrane trafficking proteins in b
宿主细胞骨架、细胞粘附和膜运输蛋白在 b 中的作用
- 批准号:
8623547 - 财政年份:2014
- 资助金额:
$ 38.18万 - 项目类别:
Roles for host cytoskeletal, cell adhesion and membrane trafficking proteins in b
宿主细胞骨架、细胞粘附和膜运输蛋白在 b 中的作用
- 批准号:
8830430 - 财政年份:2014
- 资助金额:
$ 38.18万 - 项目类别:
Mechanisms of Rickettsia invasion, intracellular survival, and actin-based motility
立克次体侵袭、细胞内存活和基于肌动蛋白的运动的机制
- 批准号:
10238082 - 财政年份:2014
- 资助金额:
$ 38.18万 - 项目类别:
Rickettsia mobilization of the cytoskeleton during invasion, motility, and spread
立克次体在入侵、运动和扩散过程中动员细胞骨架
- 批准号:
8761830 - 财政年份:2014
- 资助金额:
$ 38.18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diversity Supplement: Novel Role of Nephron Epithelialization in Nuclear Signaling
多样性补充:肾单位上皮化在核信号传导中的新作用
- 批准号:
10853534 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别:
The TNF Superfamily Control of Pathological Remodeling Associated with Severe Asthma
TNF超家族对严重哮喘相关病理重塑的控制
- 批准号:
10710727 - 财政年份:2023
- 资助金额:
$ 38.18万 - 项目类别: