NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
基本信息
- 批准号:10469690
- 负责人:
- 金额:$ 62.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAction PotentialsAddressAlgorithmsAnatomyAreaAutomationBRAIN initiativeBehaviorBiophysicsBrainBrain regionCharacteristicsCognitionCollaborationsCommunitiesComputer softwareDataData SetDetectionDevicesDiseaseElectrodesElectrophysiology (science)ElementsEnsureEventFundingGoalsImageImage EnhancementIndividualIndustrializationInfrastructureLeadershipLearningMeasurementMeasuresMethodsMorphologyMotionNatureNerve DegenerationNeuronsOpticsPopulationPrivatizationProcessProductionPsyche structureResearchResolutionResourcesSamplingSampling BiasesScienceScientific Advances and AccomplishmentsShapesSiteSoftware ToolsSortingSpecific qualifier valueSpeedStructureSystemTechniquesTestingTrainingValidationWorkbiophysical modelcell typecostcost efficientdata qualitydensitydesigndisabilityelectric fieldexcitatory neuronexperimental studyfabricationflexibilitygranule cellhippocampal pyramidal neuronimage registrationimaging modalityimprovedimproved outcomein vivoin vivo Modelinhibitory neuroninnovationinterestmultimodalityneuromechanismnext generationnovelopen sourcetemporal measurementtooltwo-photonuser friendly softwareuser-friendlyvoltage
项目摘要
Summary/Abstract
Understanding the neural mechanisms underpinning cognition and behavior requires the
ability to measure the dynamics and interactions of populations of neurons spread across
many brain regions. Electrophysiological techniques provide the ability to measure this
activity across superficial and deep structures at the speed of thought. Recent advances in
electrophysiology have massively increased data quantity, quality, and ease of acquisition,
thereby meaningfully reducing barriers to understanding the global brain circuits underlying
behavior. A significant remaining challenge is to optimize device characteristics in order to
further broaden utility, improve data quality, and accelerate the pace of research. In
particular, state of the art site density is spatially too coarse to detect some cell types and
neuronal processes; it remains challenging to record neurons stably in the face of brain
motion; and data preprocessing is still a major limiting factor in the pace of experiments.
This proposal will address these limitations by producing and evaluating a new device with
>10x the number of recording sites than state-of-the-art, corresponding to an order of
magnitude higher density. This device thus functions like a high-resolution electrical camera
in the brain, able to image tiny electrical fields and capable of capitalizing on techniques
from optics such as image registration for recording stability.
We will validate and develop the new probe's characteristics by quantifying their increased
ability to detect a large range of neuron types; by testing and developing their ability to track
neurons across brain motion using controlled conditions; by improving algorithms towards
automation of data preprocessing; and by conducting multi-modal ground-truth experiments.
These probes will go beyond solving technical limitations, additionally providing new types of
data: electrical imaging of `electro-morphological' shapes will enable enhanced cell-type
identification and validation of neuronal biophysical models in vivo.
We will disseminate the new probes, along with user-friendly software to take advantage of
their improved characteristics, to `beta-tester' labs specifically interested in studying key
areas of scientific opportunity. These areas include dendritic computation, freely-moving
behavior, and cerebellar function, and this direct dissemination will rapidly accelerate their
impact on scientific advancement.
摘要/摘要
了解支撑认知和行为的神经机制需要
测量分布在各处的神经元群的动态和相互作用的能力
许多大脑区域。电生理技术提供了测量这一点的能力
以思维的速度跨越表层和深层结构的活动。最近的进展
电生理学极大地提高了数据的数量、质量和获取的便利性,
从而有意义地减少理解全球大脑回路的障碍
行为。剩下的一个重大挑战是优化器件特性,以便
进一步拓宽效用,提高数据质量,加快研究步伐。在
特别是,最先进的位点密度在空间上太粗糙,无法检测某些细胞类型,并且
神经元过程;稳定地记录大脑面部的神经元仍然具有挑战性
运动;数据预处理仍然是实验速度的主要限制因素。
该提案将通过生产和评估新设备来解决这些限制
> 记录站点数量是最先进技术的 10 倍,相当于
密度更高。因此,该设备的功能类似于高分辨率电子相机
在大脑中,能够对微小的电场进行成像并能够利用技术
来自光学器件,例如用于记录稳定性的图像配准。
我们将通过量化新探针增加的特性来验证和开发新探针的特性。
检测多种神经元类型的能力;通过测试和发展他们的跟踪能力
使用受控条件进行跨大脑运动的神经元;通过改进算法
数据预处理自动化;并进行多模态地面实况实验。
这些探测器将超越解决技术限制,此外还提供新型
数据:“电形态”形状的电成像将增强细胞类型
体内神经元生物物理模型的识别和验证。
我们将传播新的探测器以及用户友好的软件以利用
他们改进的特性,以“测试测试”实验室特别有兴趣研究关键
科学机会领域。这些领域包括树突计算、自由移动
行为和小脑功能,这种直接传播将迅速加速它们
对科学进步的影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
- DOI:10.1126/science.abf4588
- 发表时间:2021-04-16
- 期刊:
- 影响因子:0
- 作者:Steinmetz NA;Aydin C;Lebedeva A;Okun M;Pachitariu M;Bauza M;Beau M;Bhagat J;Böhm C;Broux M;Chen S;Colonell J;Gardner RJ;Karsh B;Kloosterman F;Kostadinov D;Mora-Lopez C;O'Callaghan J;Park J;Putzeys J;Sauerbrei B;van Daal RJJ;Vollan AZ;Wang S;Welkenhuysen M;Ye Z;Dudman JT;Dutta B;Hantman AW;Harris KD;Lee AK;Moser EI;O'Keefe J;Renart A;Svoboda K;Häusser M;Haesler S;Carandini M;Harris TD
- 通讯作者:Harris TD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY D HARRIS其他文献
TIMOTHY D HARRIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY D HARRIS', 18)}}的其他基金
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
10475277 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
9924965 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
Neuropixels NXT: Integrated Silicon Probes for Large Scale Extracellular Recording in Rodents and Primates
Neuropixels NXT:用于啮齿动物和灵长类动物大规模细胞外记录的集成硅探针
- 批准号:
10240456 - 财政年份:2020
- 资助金额:
$ 62.78万 - 项目类别:
NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
- 批准号:
10231150 - 财政年份:2019
- 资助金额:
$ 62.78万 - 项目类别:
NeuropixelsUltra: Dense arrays for stable, unbiased, and cell type-specific electrical imaging
NeuropixelsUltra:用于稳定、无偏且细胞类型特异性电成像的密集阵列
- 批准号:
10016865 - 财政年份:2019
- 资助金额:
$ 62.78万 - 项目类别:
High Accuracy Single Molecule DNA Sequencing by Synthesis
高精度单分子 DNA 合成测序
- 批准号:
7192686 - 财政年份:2006
- 资助金额:
$ 62.78万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A new approach to understanding cognitive disabilities in Down syndrome
理解唐氏综合症认知障碍的新方法
- 批准号:
10725562 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
ENABLING SUBMILLISECOND-TIMESCALE TWO-PHOTON RECORDING OF VOLTAGE DYNAMICS IN THREE DIMENSIONS IN VIVO
实现体内三维电压动态的亚毫秒级双光子记录
- 批准号:
10739579 - 财政年份:2023
- 资助金额:
$ 62.78万 - 项目类别:
Accelerating remyelination using lanthionine ketimine derivatives
使用羊毛硫氨酸酮亚胺衍生物加速髓鞘再生
- 批准号:
10708047 - 财政年份:2022
- 资助金额:
$ 62.78万 - 项目类别:
Elucidating mechanisms of active dendritic integration in vivo
阐明体内主动树突整合的机制
- 批准号:
10621807 - 财政年份:2022
- 资助金额:
$ 62.78万 - 项目类别: