Investigating the role of TCF4 in human interneuron function and dysfunction
研究 TCF4 在人类中间神经元功能和功能障碍中的作用
基本信息
- 批准号:10348034
- 负责人:
- 金额:$ 2.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-09 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectBiologyBrainCRISPR/Cas technologyCalciumCell LineClinicalDevelopmentDimerizationDiseaseDorsalEpilepsyExhibitsForebrain DevelopmentFunctional disorderGenesGeneticGenetic TranscriptionGlutamatesGoalsHumanIn VitroIntellectual functioning disabilityInterneuron functionInterneuronsLeadMolecularMutationNeurobiologyNeuronsOutcomePatientsPharmacologyPhaseProcessPropertyProsencephalonRoleSchizophreniaSurveysSynapsesTCF7L2 geneTestingTissuesTrainingVariantautism spectrum disordercell typecritical perioddifferential expressiondisease-causing mutationdosageepileptic encephalopathiesexcitatory neuronexperimental studyfetalgenetic varianthuman modelinduced pluripotent stem cellinhibitory neuronmigrationneuropsychiatric disordernew therapeutic targetresponsestem cell modeltranscription factor
项目摘要
Original abstract: Formation of cortical circuits during fetal cortical development involves the
assembly of glutamatergic neurons and GABAergic interneurons. After their specification,
GABAergic interneurons migrate dorsally to reach the cortex and undergo activity-dependent
maturation and integration into glutamatergic circuits. Genetic perturbations of this process can
lead to miswiring of early cortical circuits and to excitation/inhibition imbalance which is thought
to underlie various disorders such as schizophrenia, autism spectrum disorders and epilepsies.
The neurobiological basis of how disease-associated gene variants affect the assembly of early
cortical circuits in humans remains unknown. This is mainly due to the lack of patient tissue
available for functional studies. In response to this, we have recently developed a 3D in vitro
platform of forebrain development, termed forebrain Assembloids, where region-specific forebrain
cultures derived from human induced pluripotent stem cells (hiPSCs) are functionally assembled.
Using this platform, we showed that GABAergic interneurons migrate towards and integrate with
glutamatergic neurons forming cortical ensembles that exhibits glutamatergic and GABAergic
synaptic activity. When we surveyed for differentially expressed genes in interneurons that
migrated in the cortical network, we identified TCF4, a basic loop-helix-loop transcription factor,
potentially indicating a role in interneuron functional maturation. In line with this idea, several
TCF4 variants have been identified across clinically distinct disorders that have been frequently
associated with interneuron dysfunction, such as schizophrenia, autism spectrum disorders,
intellectual disability and epileptic encephalopathies. TCF4 is a major transcriptional hub that,
through its cell- type-specific dimerization partners regulated by intracellular calcium levels, can
assume different roles at various stages of fetal brain development. As such, TCF4 dosage is
thought to be tightly regulated during development. It has been hypothesized that the degree by
which each TCF4 variants affects its dosage is correlated with specific clinical outcomes, although
this has not yet been thoroughly tested in humans. The goal of this proposal is to understand
mechanisms by which distinct TCF4 variants affect the TCF4 regulatory network and lead to
molecular and cellular deficits in human interneurons during assembly of early cortical circuits in
the forebrain Assembloids. During the K99 phase, I propose to generate and characterize hiPSC
lines harboring various disease-associated TCF4 mutations using CRISPR/Cas9 gene editing
through training in the Porteus lab. I will then generate forebrain assembloids from these lines
and interrogate whether migration, intrinsic properties, synaptic integration and functional
connectivity of cortical interneurons are disrupted in cortical ensembles, through training in the
Huguenard lab. During the independent R00 phase, I will investigate molecular deficits TCF4-
related gene networks related to deficits uncovered in Aim 1 and 2 and explore pharmacological
targets for rescue experiments.
原始摘要:胎儿皮质发育过程中皮质回路的形成涉及
谷氨酸能神经元和 GABA 能中间神经元的组装。在他们的规范之后,
GABA能中间神经元背侧迁移到达皮质并经历活动依赖性
成熟并整合到谷氨酸能回路中。这个过程的遗传扰动可以
导致早期皮质回路的错误接线以及激发/抑制失衡,这被认为是
是各种疾病的基础,例如精神分裂症、自闭症谱系障碍和癫痫症。
疾病相关基因变异如何影响早期神经元组装的神经生物学基础
人类的皮质回路仍然未知。这主要是由于患者组织缺乏
可用于功能研究。针对这一点,我们最近开发了3D体外
前脑发育平台,称为前脑组装体,其中区域特定的前脑
来自人类诱导多能干细胞 (hiPSC) 的培养物进行功能性组装。
使用这个平台,我们表明 GABA 能中间神经元迁移并整合
谷氨酸能神经元形成皮质群,表现出谷氨酸能和 GABA 能
突触活动。当我们调查中间神经元中差异表达的基因时
在皮质网络中迁移后,我们鉴定了TCF4,一种基本的环-螺旋-环转录因子,
可能表明在中间神经元功能成熟中发挥作用。本着这个想法,几
TCF4 变异体已在临床上常见的不同疾病中被发现
与中间神经元功能障碍有关,例如精神分裂症、自闭症谱系障碍、
智力障碍和癫痫性脑病。 TCF4 是一个主要的转录中心,
通过其受细胞内钙水平调节的细胞类型特异性二聚化伙伴,可以
在胎儿大脑发育的不同阶段发挥不同的作用。因此,TCF4剂量为
认为在开发过程中受到严格监管。据推测,该程度由
每个 TCF4 变体对其剂量的影响与特定的临床结果相关,尽管
这尚未在人体中进行彻底的测试。该提案的目标是了解
不同的 TCF4 变异影响 TCF4 调控网络并导致
早期皮质回路组装过程中人类中间神经元的分子和细胞缺陷
前脑组装体。在K99阶段,我建议生成并表征hiPSC
使用 CRISPR/Cas9 基因编辑技术携带各种与疾病相关的 TCF4 突变的品系
通过在 Porteus 实验室的培训。然后我将从这些细胞系中生成前脑组合体
并询问迁移、内在特性、突触整合和功能是否
通过训练,皮质中间神经元的连接在皮质整体中被破坏
于格纳德实验室。在独立R00阶段,我将研究分子缺陷TCF4-
与目标 1 和 2 中发现的缺陷相关的相关基因网络并探索药理学
救援实验的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fikri Birey其他文献
Fikri Birey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fikri Birey', 18)}}的其他基金
Investigating the role of TCF4 in human interneuron function and dysfunction
研究 TCF4 在人类中间神经元功能和功能障碍中的作用
- 批准号:
10578907 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Investigating the role of TCF4 in human interneuron function and dysfunction
研究 TCF4 在人类中间神经元功能和功能障碍中的作用
- 批准号:
10596187 - 财政年份:2022
- 资助金额:
$ 2.6万 - 项目类别:
Investigating the role of TCF4 in human interneuron function and dysfunction
研究 TCF4 在人类中间神经元功能和功能障碍中的作用
- 批准号:
9903457 - 财政年份:2019
- 资助金额:
$ 2.6万 - 项目类别:
相似国自然基金
水产消毒剂对淡水池塘沉积物甲烷产生的影响及其微生物学机制
- 批准号:42307112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮沉降影响南亚热带森林土壤颗粒和矿物结合态碳库蓄存的微生物学机制
- 批准号:32301366
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
增氧灌溉对水稻籽粒灌浆的影响及生物学机制
- 批准号:32360530
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于空间组学探讨IL-1β调控NF-κB影响CD4+T细胞生物学特性在HIV相关DLBCL中的作用及机制
- 批准号:82360036
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
微塑料对农田土壤团聚体有机碳矿化的影响及其微生物学机制
- 批准号:42307050
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioorthogonal probe development for highly parallel in vivo imaging
用于高度并行体内成像的生物正交探针开发
- 批准号:
10596786 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别:
High-throughput in vivo and in vitro functional and multi-omics screens of neuropsychiatric and neurodevelopmental disorder risk genes
神经精神和神经发育障碍风险基因的高通量体内和体外功能和多组学筛选
- 批准号:
10643398 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 2.6万 - 项目类别: