Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
基本信息
- 批准号:10353118
- 负责人:
- 金额:$ 13.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-09-16
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBrainBrain DiseasesCellsComplexDataElectrophysiology (science)EvolutionExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsIndividualLearningMachine LearningMagnetic Resonance ImagingMeasurementMeasuresMethodsModalityModelingNeuronsNonlinear DynamicsOpticsPopulationProcessSamplingStructureSystemTestingTimeTranslatingVariantVibrissaeWorkanalogbasebrain researchdynamic systemexperimental studyimprovedinformation processinglong short term memorylong short term memory networkmillisecondmultimodalitymultiscale datanetwork architectureneuroregulationoptical imagingpredicting responsetemporal measurementtheoriestool
项目摘要
The brain is a complex dynamical system, with a hierarchy of spatial and temporal scales ranging from microns
and milliseconds to centimeters and years. Activity at any given scale contributes to activity at the scales above
it and can influence activity at smaller scales. Thus a true understanding of the brain requires the ability to
understand how each level contributes to the system as a whole.
Most brain research focuses on a single scale (single unit firing, activity in a circuit), which cannot account for
the constraints imposed by activities at other scales. The goal of this proposal is to develop a framework for the
integration of multiscalar, multimodal measurements of brain activity. One of the challenges in understanding
how activity translates across scales is that features that are relevant at one scale (e.g., firing rate) do not have
clear analogues at other scales. We address this issue by defining trajectories in “state space” at each scale,
where the state space is defined by parameters and time scales appropriate to each type of data. The trajectory
of brain activity through state space can uncover features like attractor dynamics and limit cycles that
characterize the evolution of activity. Using machine learning along with new and existing multimodal
measurements of brain activity (MRI, optical, and electrophysiological), we propose to establish methods that
relate trajectories across scales while handling the mismatch in temporal sampling rates inherent in multi-scale
data. Specific aims are 1. Create and test a tool for learning how trajectories at fast scales influence activity at
slower scales. Different modalities have different inherent temporal resolutions in addition to different types
of contrast. Current methods generally downsample the faster modality in some way, losing much information
in the process. We will leverage variants on long short-term memory (LSTM) network architectures to learn the
relationship between state space trajectories acquired simultaneously with population recording and optical
imaging, and with optical imaging and fMRI. 2. Create and test a tool for learning how trajectories at slow
scales influence activity at faster scales. Leveraging the same LSTM-based approach, we will learn how
slower, larger scale activity affects activity at smaller scales, using whisker stimulation as a test case. We
anticipate inclusion of the large scale activity (measured with fMRI or optical imaging) will improve prediction
of the response at smaller scales (measured with optical imaging or population recording).
Our work will allow us to begin to answer a wide range of questions about how the brain functions (e.g., what
type of localized stimulation that will drive the brain to a desired global state? How does modulation of the
global brain state affect local information processing?) and provide guidance for future experiments by
identifying key features that influence activity across scales. By approaching the whole brain as a complex
dynamical system, we will break free from the limitations of previous studies that focus on individual cells or
circuits. We also expect our work to stimulate new theories that incorporate multiple scales of activity.
大脑是一个复杂的动力系统,具有从微米到微米的空间和时间尺度层次结构
任何给定尺度的活动都会对上述尺度的活动做出贡献。
它可以影响较小规模的活动,因此,真正了解大脑需要具备以下能力。
了解每个级别如何对整个系统做出贡献。
大多数大脑研究都集中在单一尺度(单个单元发射、电路中的活动),这无法解释
该提案的目标是为其他规模的活动制定一个框架。
大脑活动的多标量、多模式测量的整合是理解的挑战之一。
活动如何跨尺度转化是在一个尺度上相关的特征(例如,放电率)不具有
我们通过在每个尺度的“状态空间”中定义轨迹来解决这个问题,
其中状态空间由适合每种数据类型的参数和时间尺度定义。
通过状态空间研究大脑活动可以揭示吸引子动力学和极限环等特征
使用机器学习以及新的和现有的多模式来描述活动的演变。
测量大脑活动(MRI、光学和电生理),我们建议建立方法
跨尺度的轨迹相互关联,同时处理多尺度固有的时间采样率的不匹配
具体目标是 1. 创建并测试一个工具,用于了解快速尺度的轨迹如何影响活动。
除了不同的类型之外,不同的模态还具有不同的固有时间分辨率。
当前的方法通常以某种方式对较快的模态进行下采样,从而丢失大量信息。
在此过程中,我们将利用长短期记忆 (LSTM) 网络架构的变体来学习
与群体记录同时获得的状态空间轨迹与光学之间的关系
成像,以及光学成像和功能磁共振成像 2. 创建并测试一个用于了解慢速轨迹的工具。
利用相同的基于 LSTM 的方法,我们将了解如何以更快的速度影响活动。
使用胡须刺激作为测试用例,较慢、较大规模的活动会影响较小规模的活动。
预期纳入大规模活动(通过功能磁共振成像或光学成像测量)将改善预测
较小规模的响应(通过光学成像或人口记录测量)。
我们的工作将使我们能够开始回答有关大脑如何运作的广泛问题(例如,什么
将驱动大脑达到所需的全局状态的局部刺激类型如何调节?
全局大脑状态影响局部信息处理?)并为未来的实验提供指导
通过将整个大脑视为一个复杂的系统来识别影响跨尺度活动的关键特征。
动力系统,我们将摆脱以前专注于单个细胞或
我们还期望我们的工作能够激发包含多种活动尺度的新理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shella D Keilholz其他文献
Shella D Keilholz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shella D Keilholz', 18)}}的其他基金
9.4T MRI Upgrade for Translational Neuroimaging Research
9.4T MRI 升级用于转化神经影像研究
- 批准号:
10177221 - 财政年份:2021
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10343774 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
10579830 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Impact of locus coeruleus-derived tau pathology in a rodent model of early Alzheimer's disease
蓝斑源性 tau 蛋白病理学对早期阿尔茨海默病啮齿动物模型的影响
- 批准号:
9887350 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Crossing space and time: uncovering the nonlinear dynamics of multimodal and multiscale brain activity
跨越时空:揭示多模式和多尺度大脑活动的非线性动力学
- 批准号:
10007011 - 财政年份:2020
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9352877 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9754248 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Spatiotemporal signatures of neural activity and neurophysiology in the BOLD signal
BOLD 信号中神经活动和神经生理学的时空特征
- 批准号:
9205825 - 财政年份:2016
- 资助金额:
$ 13.19万 - 项目类别:
Contribution of Ultra Low Frequency LFPs to Functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
8704404 - 财政年份:2012
- 资助金额:
$ 13.19万 - 项目类别:
Contribution of ultralow frequency LFPs to functional MRI
超低频 LFP 对功能 MRI 的贡献
- 批准号:
10159972 - 财政年份:2012
- 资助金额:
$ 13.19万 - 项目类别:
相似国自然基金
长期拥挤胁迫对大口黑鲈不同脑区的影响
- 批准号:32303033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
6PPD-醌干扰肠道微生物-免疫-脑轴影响儿童认知发育的研究
- 批准号:22376079
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
组氨酸介导肠道微生物调节谷氨酸能系统影响蛋鸡啄羽的肠-脑轴机制
- 批准号:32372931
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
心肺耐力对青少年执行功能影响效应及其特定脑区激活状态的多民族研究
- 批准号:82373595
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于颞叶癫痫探讨ta-VNS对工作记忆影响及脑网络机制研究
- 批准号:82301353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 13.19万 - 项目类别:
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 13.19万 - 项目类别:
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 13.19万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 13.19万 - 项目类别: