Engineering optimization and scaling enables high quality pancreatic islet cryopreservation for banking and transplant
工程优化和扩展可实现高质量胰岛冷冻保存以用于储存和移植
基本信息
- 批准号:10343955
- 负责人:
- 金额:$ 58.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-22 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectBiologicalBiologyCellsCellular StressCessation of lifeChemicalsClinicalCryopreservationCryoprotective AgentsCrystallizationCyclic GMPDataDiabetes MellitusDiseaseDoseEngineeringFamily suidaeFreezingGoalsHealthHealth Care CostsHeatingHumanIceImpairmentIn VitroIndividualInfusion proceduresInjuryInsulinInterdisciplinary StudyIslets of LangerhansIslets of Langerhans TransplantationKnowledgeMeasuresMethodsModelingMolecularMusOrganPancreasPathway interactionsPersonal SatisfactionPhenotypeProblem SolvingProceduresProcessProtocols documentationRecovery of FunctionReportingResourcesRewarmingRiskSourceSurvival RateSystemTechnologyTemperatureTestingTissuesToxic effectTranslationsTransplantationValidationWhole OrganismXenograft Modeladvanced analyticsanalytical methodcGMP productionclinical translationcostcryogenicshuman stem cellsimprovedin vivoinnovative technologiesisletpotency testingpreservationpreventrepairedresponsescale upstem cellssuccesstransplant centers
项目摘要
Project Summary
Diabetes has a tremendous impact on the health and well-being of affected individuals, as well as a
considerable overall societal burden. Pancreatic islet transplantation has the potential to cure diabetes, but one
of the main problems limiting the success of this treatment is an inadequate supply of islets. Islets from a single
donor are often insufficient to achieve insulin independence, and multiple infusions are often required, each with
increasing risk. Two potential strategies exist to increase the number of islets available: (1) pool islets from
multiple donors and perform single procedure, high-dose transplants; and (2) develop alternative sources such
as stem-cell-derived islets. The availability of these limited resources becomes a supply chain problem, and for
either approach, a method for islet preservation is essential. Our long-term objective is to develop a method for
cryopreserving, or “banking,” islets prior to transplant. No previous strategy has achieved the high viability,
function, and clinical scalability required for transplant in a single approach.
To achieve long-term islet banking, we propose to use an alternative cryopreservation strategy, vitrification.
That is, cryogenic storage in an ice-free glassy state. A significant challenge in the vitrification of biospecimens
is that the cooling and heating rates needed for vitrifying and rewarming are tremendously high (>107 °C/min).
These rates are reduced by adding cryoprotective agents (CPA) that inhibit ice formation, but these agents are
themselves toxic to islets. Thus, the critical challenge in islet vitrification is achieving fast enough cooling and
warming to avoid ice, while avoiding toxicity from the CPA, and doing so in a clinically scalable manner.
Using engineering principles of heat and mass transfer, our multidisciplinary research team has developed
an approach for vitrification and rewarming (VR) to solve this problem, termed “cryomesh VR,” for islets. Our
central hypothesis is that the improved heat transfer achieved by cryomesh VR, combined with optimizations
in CPA use, will enable ice-free vitrification and rewarming of islets while avoiding toxicity. Our preliminary
data achieve cooling and warming rates far exceeding other methods, and we have shown CPA loading and
unloading protocols with low toxicity in mouse, human, pig, and human stem-cell-derived (SC) islets. Indeed, in
all cryopreserved islet models tested we have achieved viability, recovery, and function that meets or exceeds
all previous reports and does so in a clinically scalable method. To further improve our approach and move
towards clinical translation, we propose the following aims: Aim 1. Refine the optimal physical conditions for the
cryomesh VR of mouse, human, and SC islets; Aim 2. Measure the viability, function, and in vivo potency of
mouse, human, and SC islets following cryomesh VR; Aim 3. Define the molecular and cellular changes occurring
in response to cryopreservation; and Aim 4. Scale-up cryomesh VR for clinical throughput and adapt the
processes for cGMP production. If successful this approach could revolutionize how islets are isolated, allocated,
and stored prior to transplant and increase utilization of deceased donor pancreases for the cure of diabetes.
项目摘要
糖尿病对受影响个体的健康和福祉产生了巨大影响,
整体社会伯恩(Burnen)相当大。胰岛移植具有治愈糖尿病的潜力,但一种
限制这种处理成功的主要问题是胰岛供应不足。一个来自单个的胰岛
供体通常不足以实现胰岛素独立性,并且经常需要多次输注
增加风险。存在两种潜在策略来增加可用胰岛的数量:(1)来自
多个捐助者并执行单个程序,高剂量移植; (2)开发此类替代来源
作为干细胞衍生的胰岛。这些有限资源的可用性成为供应链问题,并且
无论哪种方法,胰岛制备方法都是必不可少的。我们的长期目标是为
移植之前的冷冻水平或“银行”胰岛。没有以前的策略实现高可行性,
单个方法中移植所需的功能和临床可伸缩性。
为了实现长期的胰岛银行业务,我们建议使用替代性冷冻保存策略,即玻璃化。
也就是说,处于无冰玻璃状态下的低温存储。生物测量的果实挑战
是玻璃化和重新加热所需的冷却和加热速率高(> 107°C/min)。
通过添加抑制冰形成的冷冻保护剂(CPA)来降低这些速率,但这些试剂是
自己对胰岛有毒。那就,胰岛玻璃体中的关键挑战是实现足够快的冷却和
加热以避免冰,同时避免CPA的毒性,并以临床上可扩展的方式进行冰。
我们的多学科研究团队使用了热量和传播的工程原理
用于解决此问题的玻璃化和恢复(VR)的方法,称为“ Cryomesh VR”,用于胰岛。我们的
中心假设是Cryomesh VR获得的改进的热传递,结合了优化
在使用CPA时,将在避免毒性的同时,使胰岛无冰的玻璃化和重新加热。我们的初步
数据达到冷却和变暖率远远超过其他方法,我们显示了CPA的加载和
在小鼠,人,猪和人类干细胞衍生(SC)胰岛中具有低毒性的卸载方案。确实,在
所有测试的冷冻保存胰岛模型我们已经实现了满足或超过的生存能力,恢复和功能
所有以前的报告,并以临床上可扩展的方法进行。进一步改善我们的方法并移动
为了临床翻译,我们提出以下目的:目标1。完善最佳的物理条件
小鼠,人类和SC小岛的Cryomesh VR;目标2。测量的生存能力,功能和体内效力
Cryomesh VR后的小鼠,人类和SC小岛;目标3。定义发生的分子和细胞变化
回应冷冻保存; AIM 4。用于临床吞吐量的Cryomesh VR扩展并适应
CGMP生产的过程。如果成功的话,这种方法可以彻底改变胰岛的隔离,分配,
并在移植之前存储并增加了已故供体胰腺的利用来治愈糖尿病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN C BISCHOF其他文献
JOHN C BISCHOF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN C BISCHOF', 18)}}的其他基金
Cryopreservation and nanowarming enables whole liver banking for transplantation, cell therapy and biomedical research
冷冻保存和纳米加温使整个肝脏库能够用于移植、细胞治疗和生物医学研究
- 批准号:
10584878 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Resources for Drosophila embryo cryopreservation at lab and stock center scale
实验室和库存中心规模的果蝇胚胎冷冻保存资源
- 批准号:
10569277 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Subzero preservation of vascular composite allografts
同种异体复合血管的低温保存
- 批准号:
10664308 - 财政年份:2022
- 资助金额:
$ 58.35万 - 项目类别:
Engineering optimization and scaling enables high quality pancreatic islet cryopreservation for banking and transplant
工程优化和扩展可实现高质量胰岛冷冻保存以用于储存和移植
- 批准号:
10680579 - 财政年份:2021
- 资助金额:
$ 58.35万 - 项目类别:
Organ banking for transplant--kidney cryopreservation by vitrification and novel nanowarming technology
移植器官库——玻璃化肾脏冷冻保存和新型纳米加温技术
- 批准号:
10657291 - 财政年份:2018
- 资助金额:
$ 58.35万 - 项目类别:
Organ banking for transplant—kidney cryopreservation by vitrification and novel nanowarming technology
通过玻璃化和新型纳米加温技术进行移植肾冷冻保存的器官库
- 批准号:
9912760 - 财政年份:2018
- 资助金额:
$ 58.35万 - 项目类别:
Breakthrough Tissue and Organ Preservation and Transplantation Using Scaled-Up Nanowarming Technology
利用大规模纳米变暖技术实现突破性组织和器官保存和移植
- 批准号:
9980462 - 财政年份:2017
- 资助金额:
$ 58.35万 - 项目类别:
Breakthrough Tissue and Organ Preservation and Transplantation Using Scaled-Up Nanowarming Technology
利用大规模纳米变暖技术实现突破性组织和器官保存和移植
- 批准号:
9757813 - 财政年份:2017
- 资助金额:
$ 58.35万 - 项目类别:
Gold nanoparticle laser warming of cryopreserved zebrafish embryos
金纳米颗粒激光对冷冻斑马鱼胚胎的加温
- 批准号:
10016844 - 财政年份:2017
- 资助金额:
$ 58.35万 - 项目类别:
相似国自然基金
生物炭表面结构属性对Fe(II)氧化诱导As(III)氧化截污的影响机制
- 批准号:42307492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
冷泉硫酸盐还原菌碳硫代谢影响微生物群落演替的作用机制
- 批准号:42306171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微塑料介导的农田土壤生物膜形成及其对重金属污染的影响机制
- 批准号:22376185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不同生育期冷暖季型牧草化学成分和表面附着微生物群落结构对青贮发酵品质的影响机制
- 批准号:32301500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
混用模式下戊唑醇稻作环境行为归趋对枯草芽孢杆菌生物被膜形成的影响及机制
- 批准号:32372630
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Resolving sources of heterogeneity and comorbidity in alcohol use disorder
解决酒精使用障碍的异质性和合并症的来源
- 批准号:
10783325 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别:
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 58.35万 - 项目类别: