Neural dynamics of somatosensory guidance of dexterous movement in intact and stroke-injured networks
完整和中风损伤网络中灵巧运动体感引导的神经动力学
基本信息
- 批准号:10349317
- 负责人:
- 金额:$ 11.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-29 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAcuteAddressAnatomyAnimal ModelAnimalsAreaAutomobile DrivingAwardBRAIN initiativeBehaviorBehavioralBody mass indexBrainCessation of lifeClinicalClinical ResearchComplexContralateralDataData AnalysesDevelopmentElectrophysiology (science)EvolutionFacultyFeedbackFoundationsFreedomFutureHandHand functionsHumanImpairmentInstitutionInterventionLearningLinkLocationMathematicsMentorsMethodsModelingMonitorMotorMotor ActivityMotor CortexMotor PathwaysMovementPathway interactionsPerformancePhasePhysical therapyPopulationPositioning AttributePrimatesProcessRecording of previous eventsRecoveryRobotRoleSensorySensory ReceptorsSignal TransductionSomatosensory CortexStereotypingStrokeSurvivorsTactileThalamic structureTrainingUnited StatesVentral Posterolateral Nucleusbasebrain machine interfacecombatdensitydexteritydisabilityexperimental studygrasphand dysfunctionhand rehabilitationhaptic interfacehapticsimprovedinjuredkinematicsneuroregulationnonhuman primatenovelnovel therapeuticspost strokepre-clinical researchrelating to nervous systemsensorsensorimotor systemsensory cortexsensory inputskill acquisitionskillssomatosensorystereotypystroke recoverystroke rehabilitationstroke survivortargeted treatmenttheoriestoolvirtual
项目摘要
PROJECT SUMMARY
Stroke-causing illness, disability, and early death is set to double worldwide within the next 15 years. Despite
physical therapy, about 50% of stroke survivors have impaired hand function, which strongly impacts activities
of daily living and independence; novel treatment methods are urgently required. While most pre-clinical research
addressing stroke recovery and rehabilitation focuses on restoring damaged descending movement pathways,
dexterous hand function is also reliant on the brain receiving ascending somatosensory input and being able to
use it to guide movements. Clinically and in animal models, deficits in somatosensory cortices predict worse
recovery of hand function following stroke, though the functional mechanisms by which somatosensory signals
support hand function remain poorly characterized. In this proposal, we aim to uncover how somatosensory
signals drive motor activity during the acquisition and performance of dexterous manipulation behaviors in intact
and post-stroke non-human primates.
The main experimental approach of this proposal includes simultaneous high-density, high channel-count
acute electrophysiological recordings from the somatosensory thalamus, primary somatosensory cortex, and
primary motor cortex in intact and post-stroke non-human primates performing complex manipulation tasks. The
main analytical approach includes modeling motor activity evolution as a combination of intrinsic motor cortical
dynamics and inputs from somatosensory thalamic and somatosensory cortex. The hypothesis of this proposal
is that somatosensory input signals guide the identification of effective motor activity trajectories that become
frequently used and less input-dependent with improved manipulation skill. Thus, somatosensory signals are
critical for improvement of manipulation skill and recovery of dexterity post-stroke. Completion of this proposal
will identify nodes and functional interactions within the sensorimotor system that could be targeted with novel
therapies for improving recovery of hand function following stroke.
I will complete these aims with the guidance of an exceptional mentoring team led by Dr. Karunesh
Ganguly and including Dr. Joni Wallis, Dr. Robert Morecraft, and Dr. Aaron Suminski. During the mentored phase
of the award at UCSF, I will develop a state-of-the-art high channel-count, multi-area electrophysiological
approach for monitoring the sensorimotor network. I will also conduct the proposed experiments in animals
performing object manipulation tasks, pilot a haptic brain-machine-interface task, and focus on professional
development in order to facilitate a successful transition into an independent faculty position at an academic
institution.
项目摘要
引起中风的疾病,残疾和早期死亡将在未来15年内在全球范围内两倍。尽管
物理疗法,大约50%的中风幸存者的手部功能受损,这对活动产生了强烈影响
日常生活和独立性;迫切需要新颖的治疗方法。虽然大多数临床前研究
解决中风恢复和康复的重点是恢复受损的下降运动途径,
灵巧的手功能也依赖于大脑接收上升的体感输入,并能够
使用它来指导运动。在临床和动物模型中,体感皮质的缺陷预测更糟
中风后手功能的恢复,尽管功能机制是体感信号的
支撑手功能的特征仍然很差。在此提案中,我们旨在发现体感如何
信号驱动电动机活动在完整的灵活操纵行为的获取和性能期间
和中风后非人类灵长类动物。
该提案的主要实验方法包括同时高密度,高通道计数
体感丘脑,原发性体感皮质和急性电生理记录
一级运动皮层完整和中风后非人类灵长类动物执行复杂的操纵任务。这
主要分析方法包括将运动活动演变建模为内在运动皮质的组合
体感丘脑和体感皮质的动力和输入。该提议的假设
是体感输入信号指导有效运动活动轨迹的识别
经常使用,较少依赖于改进的操纵技巧。因此,体感信号是
在改善操纵技巧和恢复后,中风后的恢复至关重要。完成此提案
将在感觉运动系统内识别可以针对新颖的节点和功能相互作用
中风后改善手部功能恢复的疗法。
我将在Karunesh博士领导的一支杰出指导团队的指导下完成这些目标。
Ganguly,包括Joni Wallis博士,Robert Morecraft博士和Aaron Suminski博士。在指导阶段
在UCSF的奖项中,我将开发一个最先进的高渠道计数多区域生理学
监视感觉运动网络的方法。我还将在动物中进行拟议的实验
执行对象操纵任务,驾驶触觉脑机插头任务并专注于专业
为了促进在学术上成功过渡到独立教师职位的发展
机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Preeya Khanna其他文献
Preeya Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Preeya Khanna', 18)}}的其他基金
Neural dynamics of somatosensory guidance of dexterous movement in intact and stroke-injured networks
完整和中风损伤网络中灵巧运动体感引导的神经动力学
- 批准号:
10494237 - 财政年份:2021
- 资助金额:
$ 11.11万 - 项目类别:
Neuromodulation approaches for restoring dexterous control following cortical stroke.
用于恢复皮质中风后灵巧控制的神经调节方法。
- 批准号:
10223162 - 财政年份:2019
- 资助金额:
$ 11.11万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
Cognitive aging in long-term breast cancer survivors
长期乳腺癌幸存者的认知衰老
- 批准号:
10566264 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
The Protective and Pathologic Features of the EVD Survivor Immune System
埃博拉病毒病幸存者免疫系统的保护和病理特征
- 批准号:
10639583 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别: