Neural dynamics of somatosensory guidance of dexterous movement in intact and stroke-injured networks
完整和中风损伤网络中灵巧运动体感引导的神经动力学
基本信息
- 批准号:10494237
- 负责人:
- 金额:$ 11.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-29 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAcuteAddressAnatomyAnimal ModelAnimalsAreaAutomobile DrivingAwardBRAIN initiativeBehaviorBehavioralBody mass indexBrainCessation of lifeClinicalClinical ResearchComplexContralateralDataData AnalysesDevelopmentElectrophysiology (science)EvolutionFacultyFeedbackFoundationsFreedomFutureHandHand functionsHumanImpairmentInstitutionInterventionLearningLinkLocationMathematicsMentorsMethodsModelingMonitorMotorMotor ActivityMotor CortexMotor PathwaysMovementPathway interactionsPerformancePhasePhysical therapyPopulationPositioning AttributePrimatesProcessRecording of previous eventsRecoveryRobotRoleSensorySensory ReceptorsSignal TransductionSomatosensory CortexStereotypingStrokeSurvivorsTactileThalamic structureTrainingUnited StatesVentral Posterolateral Nucleusbasebrain machine interfacecombatdensitydexteritydisabilityexperimental studygrasphand dysfunctionhand rehabilitationhaptic interfacehapticsimprovedinjuredkinematicsneuroregulationnonhuman primatenovelnovel therapeuticspost strokepre-clinical researchrelating to nervous systemsensorsensorimotor systemsensory cortexsensory inputskill acquisitionskillssomatosensorystereotypystroke recoverystroke rehabilitationstroke survivortargeted treatmenttheoriestoolvirtual
项目摘要
PROJECT SUMMARY
Stroke-causing illness, disability, and early death is set to double worldwide within the next 15 years. Despite
physical therapy, about 50% of stroke survivors have impaired hand function, which strongly impacts activities
of daily living and independence; novel treatment methods are urgently required. While most pre-clinical research
addressing stroke recovery and rehabilitation focuses on restoring damaged descending movement pathways,
dexterous hand function is also reliant on the brain receiving ascending somatosensory input and being able to
use it to guide movements. Clinically and in animal models, deficits in somatosensory cortices predict worse
recovery of hand function following stroke, though the functional mechanisms by which somatosensory signals
support hand function remain poorly characterized. In this proposal, we aim to uncover how somatosensory
signals drive motor activity during the acquisition and performance of dexterous manipulation behaviors in intact
and post-stroke non-human primates.
The main experimental approach of this proposal includes simultaneous high-density, high channel-count
acute electrophysiological recordings from the somatosensory thalamus, primary somatosensory cortex, and
primary motor cortex in intact and post-stroke non-human primates performing complex manipulation tasks. The
main analytical approach includes modeling motor activity evolution as a combination of intrinsic motor cortical
dynamics and inputs from somatosensory thalamic and somatosensory cortex. The hypothesis of this proposal
is that somatosensory input signals guide the identification of effective motor activity trajectories that become
frequently used and less input-dependent with improved manipulation skill. Thus, somatosensory signals are
critical for improvement of manipulation skill and recovery of dexterity post-stroke. Completion of this proposal
will identify nodes and functional interactions within the sensorimotor system that could be targeted with novel
therapies for improving recovery of hand function following stroke.
I will complete these aims with the guidance of an exceptional mentoring team led by Dr. Karunesh
Ganguly and including Dr. Joni Wallis, Dr. Robert Morecraft, and Dr. Aaron Suminski. During the mentored phase
of the award at UCSF, I will develop a state-of-the-art high channel-count, multi-area electrophysiological
approach for monitoring the sensorimotor network. I will also conduct the proposed experiments in animals
performing object manipulation tasks, pilot a haptic brain-machine-interface task, and focus on professional
development in order to facilitate a successful transition into an independent faculty position at an academic
institution.
项目概要
未来 15 年内,全球范围内由中风引起的疾病、残疾和过早死亡人数将增加一倍。尽管
物理治疗,约 50% 的中风幸存者手部功能受损,这严重影响活动
日常生活和独立性;迫切需要新的治疗方法。虽然大多数临床前研究
解决中风恢复和康复的重点是恢复受损的下行运动路径,
灵巧的手功能还依赖于大脑接收上升的体感输入并能够
用它来指导动作。在临床和动物模型中,体感皮层的缺陷预示着情况会更糟
中风后手部功能的恢复,通过体感信号的功能机制
支持手功能的特征仍然很差。在这个提案中,我们的目标是揭示体感如何
在完整地获得和执行灵巧操作行为期间,信号驱动运动活动
和中风后的非人类灵长类动物。
该提案的主要实验方法包括同时高密度、高通道数
来自体感丘脑、初级体感皮层的急性电生理记录
完整的和中风后的非人类灵长类动物的初级运动皮层执行复杂的操作任务。这
主要分析方法包括将运动活动进化建模为内在运动皮质的组合
来自体感丘脑和体感皮层的动力学和输入。本提案的假设
体感输入信号指导识别有效的运动活动轨迹,从而成为
经常使用,较少依赖输入,并提高操作技能。因此,体感信号是
对于中风后操作技能的提高和灵活性的恢复至关重要。完成本提案
将识别感觉运动系统内的节点和功能相互作用,这些节点和功能相互作用可以针对新的
改善中风后手部功能恢复的疗法。
我将在卡鲁内什博士领导的杰出指导团队的指导下完成这些目标
Ganguly 博士,包括 Joni Wallis 博士、Robert Morecraft 博士和 Aaron Suminski 博士。在辅导阶段
在获得加州大学旧金山分校的奖项后,我将开发一种最先进的高通道数、多区域电生理学
监测感觉运动网络的方法。我还将在动物身上进行拟议的实验
执行物体操作任务,试点触觉脑机接口任务,并专注于专业
发展,以促进成功过渡到学术界的独立教职职位
机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Preeya Khanna其他文献
Preeya Khanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Preeya Khanna', 18)}}的其他基金
Neural dynamics of somatosensory guidance of dexterous movement in intact and stroke-injured networks
完整和中风损伤网络中灵巧运动体感引导的神经动力学
- 批准号:
10349317 - 财政年份:2021
- 资助金额:
$ 11.11万 - 项目类别:
Neuromodulation approaches for restoring dexterous control following cortical stroke.
用于恢复皮质中风后灵巧控制的神经调节方法。
- 批准号:
10223162 - 财政年份:2019
- 资助金额:
$ 11.11万 - 项目类别:
相似国自然基金
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
活性脂质Arlm-1介导的自噬流阻滞在儿童T细胞急性淋巴细胞白血病化疗耐药逆转中的作用机制研究
- 批准号:82300182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
Cognitive aging in long-term breast cancer survivors
长期乳腺癌幸存者的认知衰老
- 批准号:
10566264 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
Next Generation Opto-GPCRs for Neuromodulatory Control
用于神经调节控制的下一代 Opto-GPCR
- 批准号:
10515612 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别:
The Protective and Pathologic Features of the EVD Survivor Immune System
埃博拉病毒病幸存者免疫系统的保护和病理特征
- 批准号:
10639583 - 财政年份:2023
- 资助金额:
$ 11.11万 - 项目类别: