mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers

心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Heart failure (HF) is a debilitating disease that affects over five million people in the United States. Occurrence of, morbidity related to, and hospitalization due to HF have serious financial implications. In 2012, HF had a direct cost of over $30.7 billion annually, the majority of which was due to direct medical costs. By 2030, HF total direct costs are predicted to reach $69.7 billion, an increase of 127%. Increases in costs will be driven by an increase in the aging population, making prevention of HF and care efficiency imperative. Fifty percent of readmissions due to HF are preventable, with lack of adherence to prescribed self-care as the driving factor. Results of telemedicine intervention studies to support adherence to self-care and improve HF outcomes are inconclusive. Past telemedicine interventions for HF have utilized an array of methods including: wireless sensors, telephone services, websites, and home visits from nurses. Structured telephone support has shown in some cases to reduce hospitalization, improve clinical outcomes, and reduce all-cause mortality in HF patients. However, patient participation in telemedicine interventions varies widely. This variation is due in part to the high treatment burden placed upon patients in such home monitoring interventions, which require them to engage in novel behaviors, including using new unfamiliar hardware and spending time meeting with home health nurses. The goals of this R01 are to: 1) demonstrate that patients are adherent to a home monitoring regimen when using minimally-invasive monitoring technologies, including wrist-worn consumer activity trackers; 2) combine the minimally-invasive home monitoring regimen with predictive algorithms to forecast hospital readmission; 3) develop models using electronic health record (EHR) data and a baseline survey to predict levels of adherence to the home monitoring regimen; and 4) explore the pragmatic feasibility of using a mobile app for communicating with patients in prospective pilot study. Towards these goals, we will recruit 500 HF patients to participate in a minimally-invasive home monitoring regimen. We will measure levels of adherence to the regimen, and use collected sensor data and known readmission events to create a novel hidden semi-Markov model that continuously predicts readmission risk. Predicting a patient’s level of adherence will be performed with EHR data and a baseline survey. Finally, we will develop a mobile application that will allow patients to monitor their progress and receive adherence notifications and short surveys in a pilot study of 50 patients. The work outlined in this proposal will produce a set of foundational tools for performing home monitoring of HF patients. We will discover EHR phenotypes and mobile sensor biomarkers that are predictive of readmission and adherence, which will enable a future randomized trial that precisely targets computational patient profiles with tailored incentives based on behavioral economics to reduce hospital readmission.
项目摘要/摘要 心力衰竭(HF)是一种使人衰弱的疾病,影响了美国超过500万人。发生 与HF相关的发病率和住院有严重的财务影响。 2012年,HF有一个 每年的直接成本超过3007亿美元,其中大多数是由于直接医疗费用造成的。到2030年,HF 预计总直接成本将达到697亿美元,增长127%。成本增加将由 人口老龄化的增加,可以预防HF和护理效率。百分之五十 由于HF引起的再入院是可以预防的,由于缺乏规定的自我保健作为驱动因素。 远程医疗干预研究的结果以支持遵守自我保健和改善HF结果的结果是 尚无定论。过去针对HF的远程医疗干预措施已经使用了一系列方法,包括:无线 传感器,电话服务,网站以及护士的家庭访问。结构化电话支持已显示 在某些情况下,减少住院,改善临床结果并降低HF的全因死亡率 患者。但是,患者参与远程医疗干预措施差异很大。这种变化应部分原因 在此类家庭监测干预措施中,对患者的高度治疗燃烧,这需要他们 从事新颖的行为,包括使用新的陌生硬件和花费时间与家会面 卫生护士。 该R01的目标是:1)证明患者在何时遵守家庭监测方案 使用最小侵入性的监测技术,包括腕上的消费者活动跟踪器; 2)结合 具有预测算法预测医院再入院的最小侵入性房屋监测方案; 3) 使用电子健康记录(EHR)数据和基线调查来预测依从性水平,开发模型 到家庭监测方案; 4)探索使用移动应用程序的务实可行性 在潜在的试点研究中与患者进行交流。达到这些目标,我们将招募500名HF患者 参加最小侵入性的家庭监测方案。我们将衡量遵守水平 方案,并使用收集的传感器数据和已知的再入再入院事件来创建一个新颖的隐藏半毛电夫 不断预测再入院风险的模型。预测患者的依从性水平将进行 使用EHR数据和基线调查。最后,我们将开发一个移动应用程序,该应用程序将允许患者 在一项针对50名患者的试点研究中,监视他们的进度并接收依从性通知和简短的调查。 该提案中概述的工作将产生一组基础工具,用于执行HF的家庭监控 患者。我们将发现可预测入院的EHR表型和移动传感器生物标志物 和依从性,这将使未来的随机试验精确针对计算患者概况 根据行为经济学的量身定制的激励措施,以减少医院再入院。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessment of Heart Failure Patients' Interest in Mobile Health Apps for Self-Care: Survey Study.
  • DOI:
    10.2196/14332
  • 发表时间:
    2019-10-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohn, Albert;Speier, William;Arnold, Corey
  • 通讯作者:
    Arnold, Corey
Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression.
HCET: Hierarchical Clinical Embedding With Topic Modeling on Electronic Health Records for Predicting Future Depression.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Wells Arnold其他文献

Corey Wells Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Wells Arnold', 18)}}的其他基金

mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    9905411
  • 财政年份:
    2019
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Machine Learning Approach to Classifying Time Since Stroke using Medical Imaging
使用医学成像对中风后时间进行分类的机器学习方法
  • 批准号:
    10363751
  • 财政年份:
    2018
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8919947
  • 财政年份:
    2014
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8822562
  • 财政年份:
    2014
  • 资助金额:
    $ 72.13万
  • 项目类别:

相似国自然基金

坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
坚持还是转型?反馈驱动的创业者机会信念认知更新及响应决策机理
  • 批准号:
    72272131
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
不确定性下创业团队能量和抗逆力对创业坚持的权变影响研究
  • 批准号:
    72162025
  • 批准年份:
    2021
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
创造性思维中灵活性和坚持性动态交互的神经基础
  • 批准号:
    32100850
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Examining the association between psychosocial factors and adherence to a home exercise program for upper extremity recovery in Veteran stroke survivors
检查退伍军人中风幸存者的心理社会因素与坚持家庭锻炼计划以促进上肢恢复之间的关联
  • 批准号:
    10636974
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
  • 批准号:
    10589103
  • 财政年份:
    2020
  • 资助金额:
    $ 72.13万
  • 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
  • 批准号:
    9893292
  • 财政年份:
    2020
  • 资助金额:
    $ 72.13万
  • 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
  • 批准号:
    10378166
  • 财政年份:
    2020
  • 资助金额:
    $ 72.13万
  • 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
  • 批准号:
    10274780
  • 财政年份:
    2020
  • 资助金额:
    $ 72.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了