mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
基本信息
- 批准号:10358621
- 负责人:
- 金额:$ 72.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-05 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAdherenceAdmission activityAffectAlgorithmic AnalysisAutomobile DrivingAwardBaseline SurveysBehaviorBehavioralBlood PressureCaringClinicalClinical TrialsDataData AnalysesData SetDevicesDirect CostsDiseaseElectronic Health RecordEventFeedbackFoundationsFrequenciesFutureGoalsHeart RateHeart failureHomeHome visitationHospital ChargesHospitalizationIncentivesIndividualInterventionIntervention StudiesManualsMeasurementMeasuresMedical Care CostsMedical HistoryMethodsModelingMonitorMorbidity - disease rateNotificationOutcomeOutputPatient MonitoringPatient ParticipationPatient ReadmissionPatientsPersonsPharmaceutical PreparationsPhenotypePilot ProjectsPopulationPredictive AnalyticsPreventionProcessProtocols documentationQuality of lifeRegimenResearchResearch PersonnelResourcesRiskRisk EstimateSelf CareServicesSleepStandardizationStructureSurveysTechnologyTelemedicineTelephoneTestingTimeTime Series AnalysisUnited StatesVariantVisiting NurseWeightWireless TechnologyWorkWristadherence rateaging populationalgorithm developmentbasebehavioral economicscohortcompliance behaviorcomputer frameworkcostdashboardexperiencehospital readmissionimprovedlarge datasetsmHealthmarkov modelmeetingsminimally invasivemobile applicationmobile sensormortalitymultimodalitynovelpatient orientedpillprediction algorithmpredictive markerpredictive modelingpreventprofiles in patientsprospectiverandomized trialreadmission riskrecruitrisk predictionsensortailored messagingtooltrendusabilityweb sitewireless sensor
项目摘要
PROJECT SUMMARY/ABSTRACT
Heart failure (HF) is a debilitating disease that affects over five million people in the United States. Occurrence
of, morbidity related to, and hospitalization due to HF have serious financial implications. In 2012, HF had a
direct cost of over $30.7 billion annually, the majority of which was due to direct medical costs. By 2030, HF
total direct costs are predicted to reach $69.7 billion, an increase of 127%. Increases in costs will be driven by
an increase in the aging population, making prevention of HF and care efficiency imperative. Fifty percent of
readmissions due to HF are preventable, with lack of adherence to prescribed self-care as the driving factor.
Results of telemedicine intervention studies to support adherence to self-care and improve HF outcomes are
inconclusive. Past telemedicine interventions for HF have utilized an array of methods including: wireless
sensors, telephone services, websites, and home visits from nurses. Structured telephone support has shown
in some cases to reduce hospitalization, improve clinical outcomes, and reduce all-cause mortality in HF
patients. However, patient participation in telemedicine interventions varies widely. This variation is due in part
to the high treatment burden placed upon patients in such home monitoring interventions, which require them
to engage in novel behaviors, including using new unfamiliar hardware and spending time meeting with home
health nurses.
The goals of this R01 are to: 1) demonstrate that patients are adherent to a home monitoring regimen when
using minimally-invasive monitoring technologies, including wrist-worn consumer activity trackers; 2) combine
the minimally-invasive home monitoring regimen with predictive algorithms to forecast hospital readmission; 3)
develop models using electronic health record (EHR) data and a baseline survey to predict levels of adherence
to the home monitoring regimen; and 4) explore the pragmatic feasibility of using a mobile app for
communicating with patients in prospective pilot study. Towards these goals, we will recruit 500 HF patients to
participate in a minimally-invasive home monitoring regimen. We will measure levels of adherence to the
regimen, and use collected sensor data and known readmission events to create a novel hidden semi-Markov
model that continuously predicts readmission risk. Predicting a patient’s level of adherence will be performed
with EHR data and a baseline survey. Finally, we will develop a mobile application that will allow patients to
monitor their progress and receive adherence notifications and short surveys in a pilot study of 50 patients.
The work outlined in this proposal will produce a set of foundational tools for performing home monitoring of HF
patients. We will discover EHR phenotypes and mobile sensor biomarkers that are predictive of readmission
and adherence, which will enable a future randomized trial that precisely targets computational patient profiles
with tailored incentives based on behavioral economics to reduce hospital readmission.
项目概要/摘要
心力衰竭 (HF) 是一种使人衰弱的疾病,影响着美国超过 500 万人。
心力衰竭相关的发病率和住院治疗具有严重的财务影响 2012 年,心力衰竭造成了严重的财务影响。
每年直接费用超过 307 亿美元,其中大部分是直接医疗费用,到 2030 年,心力衰竭。
总直接成本预计将达到 697 亿美元,增长 127% 将受到成本增长的推动。
人口老龄化的增加,使得预防心力衰竭和提高护理效率势在必行。
心力衰竭导致的再入院是可以预防的,但驱动因素是缺乏遵守规定的自我护理。
支持坚持自我护理和改善心力衰竭结果的远程医疗干预研究的结果是
过去对心力衰竭的远程医疗干预采用了一系列方法,包括: 无线。
传感器、电话服务、网站和护士家访已显示出结构化的电话支持。
在某些情况下可以减少心力衰竭的住院治疗、改善临床结果并降低全因死亡率
然而,这种差异部分是由于患者参与远程医疗干预的程度不同所致。
这种家庭监测干预措施给患者带来了沉重的治疗负担,这需要他们
参与新奇的行为,包括使用新的不熟悉的硬件以及花时间与家人见面
保健护士。
R01 的目标是:1) 证明患者在以下情况下遵守家庭监测方案:
使用微创监控技术,包括腕戴式消费者活动跟踪器 2) 结合;
采用预测算法预测再入院的微创家庭监测方案;3)
使用电子健康记录 (EHR) 数据和基线调查开发模型来预测依从性水平
家庭监控方案;4) 探索使用移动应用程序进行监控的实用可行性
为了实现这些目标,我们将招募 500 名心力衰竭患者进行前瞻性研究。
参与微创家庭监测方案。我们将衡量对该方案的遵守程度。
方案,并使用收集的传感器数据和已知的再入院事件来创建新颖的隐藏半马尔可夫
将执行持续预测再入院风险的模型。
最后,我们将开发一款移动应用程序,让患者能够
在一项针对 50 名患者的试点研究中,监测他们的进展并接收依从性通知和简短调查。
该提案中概述的工作将产生一套用于执行家庭高频监测的基础工具
我们将发现可预测再入院的 EHR 表型和移动传感器生物标志物。
和依从性,这将使未来的随机试验能够精确地针对计算的患者资料
基于行为经济学的定制激励措施以减少再入院率。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessment of Heart Failure Patients' Interest in Mobile Health Apps for Self-Care: Survey Study.
- DOI:10.2196/14332
- 发表时间:2019-10-29
- 期刊:
- 影响因子:0
- 作者:Sohn, Albert;Speier, William;Arnold, Corey
- 通讯作者:Arnold, Corey
HCET: Hierarchical Clinical Embedding With Topic Modeling on Electronic Health Records for Predicting Future Depression.
- DOI:10.1109/jbhi.2020.3004072
- 发表时间:2021-04
- 期刊:
- 影响因子:7.7
- 作者:Meng Y;Speier W;Ong M;Arnold CW
- 通讯作者:Arnold CW
Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression.
- DOI:10.1109/jbhi.2021.3063721
- 发表时间:2021-08
- 期刊:
- 影响因子:7.7
- 作者:Meng Y;Speier W;Ong MK;Arnold CW
- 通讯作者:Arnold CW
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey Wells Arnold其他文献
Corey Wells Arnold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corey Wells Arnold', 18)}}的其他基金
mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
- 批准号:
9905411 - 财政年份:2019
- 资助金额:
$ 72.13万 - 项目类别:
A Machine Learning Approach to Classifying Time Since Stroke using Medical Imaging
使用医学成像对中风后时间进行分类的机器学习方法
- 批准号:
10363751 - 财政年份:2018
- 资助金额:
$ 72.13万 - 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
- 批准号:
8919947 - 财政年份:2014
- 资助金额:
$ 72.13万 - 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
- 批准号:
8822562 - 财政年份:2014
- 资助金额:
$ 72.13万 - 项目类别:
相似国自然基金
基于保护动机理论的新确诊青少年HIV感染者抗病毒治疗依从性“游戏+”健康教育及作用机制研究
- 批准号:82304256
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于前景理论的ADHD用药决策过程与用药依从性内在机制研究
- 批准号:72304279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于强化学习AI聊天机器人对MSM开展PrEP服药依从性精准干预模式探索及干预效果研究
- 批准号:82373638
- 批准年份:2023
- 资助金额:59 万元
- 项目类别:面上项目
基于HAPA理论的PCI术后患者运动依从性驱动机制与干预方案构建研究
- 批准号:72304180
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CAS理论视角下农村老年心血管代谢性共病管理依从性的社区-患者协同机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the association between psychosocial factors and adherence to a home exercise program for upper extremity recovery in Veteran stroke survivors
检查退伍军人中风幸存者的心理社会因素与坚持家庭锻炼计划以促进上肢恢复之间的关联
- 批准号:
10636974 - 财政年份:2023
- 资助金额:
$ 72.13万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10589103 - 财政年份:2020
- 资助金额:
$ 72.13万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
9893292 - 财政年份:2020
- 资助金额:
$ 72.13万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10378166 - 财政年份:2020
- 资助金额:
$ 72.13万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10274780 - 财政年份:2020
- 资助金额:
$ 72.13万 - 项目类别: