A Machine Learning Approach to Classifying Time Since Stroke using Medical Imaging

使用医学成像对中风后时间进行分类的机器学习方法

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Stroke is a leading cause of mortality and morbidity in the United States, with approximately 795,000 Americans experiencing a new or recurrent stroke each year. Intravenous tissue plasminogen activator (IV tPA) is the dominant and most proven treatment option, but its use is only indicated within 4.5 hours following a stroke. Unfortunately, up to 30% of stroke patients present with an unknown time since stroke (TSS) symptom onset, which makes them ineligible to receive IV tPA. Many of these individuals could be spared severe morbidity or mortality if there existed an alternative method for establishing TSS, allowing them to be identified and treated. This proposal will develop machine learning methods to create a physiologically grounded method for predicting TSS based on multiparametric magnetic resonance (MR) and computed tomography (CT) imaging data. We believe our proposed techniques will outperform state-of-the-art methods that are based on subjective image interpretation, and have the potential to provide an objective data point that may be used in conjunction with the subjective assessments of experts, or in clinical environments that lack expertise in stroke imaging Research has established that MR and CT imaging captures information that correlates with TSS. However, existing methods for extracting this information are based on a physician subjectively interpreting the images and delineating regions of interest, processes that have been documented to have only weak to moderate agreement across trained expert reviewers. An automated approach that comprehensively analyzes the spectrum of imaging data could identify complex relationships across channels that more accurately classify TSS. For example, in MR, diffusion-weighted, perfusion-weighted, and fluid attenuated inversion recovery imaging all play important roles in characterizing a stroke, but a deep understanding of how each channel may be combined to describe TSS is unknown. We propose to establish new deep learning methods for fusing this information. Specifically, we will: 1) develop a machine learning framework for classifying TSS; 2) develop a deep convolutional autoencoder to generate novel multimodal image representations from MR and CT to improve classification; and 3) implement visualization techniques that elucidate the relationship between deep features and pathophysiological stroke processes. Under this project, we will use data from the UCLA and UCI Stroke Centers, allowing us to study different patient populations and imaging techniques. The successful completion of this research will provide a new method for estimating TSS from imaging, leading to new prospective trials for providing therapy to patients with unknown TSS.
项目摘要/摘要 中风是美国死亡率和发病率的主要原因,约有79.5万 美国人每年经历新的或经常性的中风。静脉组织纤溶酶原活化剂(IV TPA)是主要且最有经验的治疗方法,但仅在4.5小时内显示其使用 中风。不幸的是,自中风(TSS)症状以来,多达30%的中风患者出现未知时间 发作,这使得他们没有资格接收IV TPA。其中许多人可能会幸免 发病率或死亡率,如果存在一种替代方法来建立TSS,则可以识别它们 并得到治疗。该建议将开发机器学习方法来创建一种生理基础的方法 用于预测基于多参数磁共振(MR)和计算机断层扫描(CT)的TSS 成像数据。我们认为,我们提出的技术将胜过基于的最先进方法 主观图像解释,并有可能提供可能使用的客观数据点 与专家的主观评估或中风缺乏专业知识的主观评估 成像 研究表明,MR和CT成像捕获了与TSS相关的信息。然而, 提取此信息的现有方法基于主观解释图像的医师 并描绘了感兴趣的区域,已记录的过程只有弱至中等 跨训练的专家审阅者达成协议。一种自动化的方法,可全面分析 成像数据的频谱可以识别跨通道的复杂关系,以更准确地进行分类 TSS。例如,在MR中,扩散加权,灌注加权和流体减弱了反转恢复 成像所有在表征中风的重要作用 组合以描述TSS是未知的。我们建议建立新的深度学习方法来融合这一点 信息。具体来说,我们将:1)开发用于对TSS进行分类的机器学习框架; 2)发展 深卷积自动编码器,从MR和CT生成新颖的多模式图像表示 改善分类; 3)实施可视化技术,阐明了深层之间的关系 特征和病理生理中风过程。在此项目下,我们将使用UCLA和UCI的数据 中风中心,使我们能够研究不同的患者人群和成像技术。成功 这项研究的完成将为估算来自成像的TSS的新方法,从而导致新的 为未知TSS患者提供治疗的前瞻性试验。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Approach to Predict Acute Ischemic Stroke Thrombectomy Reperfusion using Discriminative MR Image Features.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Wells Arnold其他文献

Corey Wells Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Wells Arnold', 18)}}的其他基金

mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    10358621
  • 财政年份:
    2019
  • 资助金额:
    $ 42.99万
  • 项目类别:
mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    9905411
  • 财政年份:
    2019
  • 资助金额:
    $ 42.99万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8919947
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8822562
  • 财政年份:
    2014
  • 资助金额:
    $ 42.99万
  • 项目类别:

相似国自然基金

通信协议影响下受限运动建模与估计问题研究
  • 批准号:
    62173068
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
对赌协议视角下并购活动金融风险及影响机制研究
  • 批准号:
    72103217
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
抱团取暖:中小股东签订一致行动人协议的动因与影响研究
  • 批准号:
    72002086
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
时空视角下的对赌协议与企业并购:绩效、风险及影响机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
调度协议影响下的单主多从遥操作系统建模与控制
  • 批准号:
    61903030
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
  • 批准号:
    10584824
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
UNderstanding the Delivery of Low-Value CAre To CHildren and the Barriers to De-Implementation (UN-LATCH)
了解向儿童提供低价值护理以及取消实施的障碍 (UN-LATCH)
  • 批准号:
    10649811
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
Digital clinical hypnosis for chronic pain management
用于慢性疼痛管理的数字临床催眠
  • 批准号:
    10696872
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
Johns Hopkins Retinal Degenerations and Visual Electrophysiology Conference 2023.
2023 年约翰霍普金斯大学视网膜变性和视觉电生理学会议。
  • 批准号:
    10753624
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
  • 批准号:
    10656829
  • 财政年份:
    2023
  • 资助金额:
    $ 42.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了