Excitatory signaling and oxidative phosphorylation alterations in schizophrenia

精神分裂症的兴奋性信号传导和氧化磷酸化改变

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Schizophrenia is a complex disorder lacking an effective treatment option for the pervasive and debilitating cognitive impairments experienced by patients. I have been acutely interested in identifying the underlying circuitry alterations tha contribute to these impairments, so that they may be treated, since the start of my doctoral training. Though my focus has been singular, the approaches and conceptual framework used to study this problem have evolved over my scientific career, and this K01 application represents the next major step in that evolution. This K01 application includes research, clinical, and career development, along with teaching/training opportunities to maximize my ability to successfully transition to independence. My long term career goals are to 1) identify and describe the molecular and cellular alterations that contribute to cortical dysfunction in schizophrenia, 2) determine the possible causes of these observed pathologies using animal models, 3) use these findings to develop pathophysiology-based pharmacological treatments for cognitive impairment in schizophrenia patients, 4) establish an independent research laboratory at a top-tier university to accomplish these goals, and 5) mentor students and postdoctoral fellows to contribute to the next generation of scientists and innovators. My short term career goals include 1) master the research techniques proposed, including laser capture microdissection of single cell populations from human and rodent cortex, electron microscopic mitochondrial analysis of human prefrontal cortical tissue, and shRNA and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) paradigms for rodent studies; 2) master experimental design to determine whether disease findings are a cause, compensation, consequence or confound; and 3) successfully transition as a faculty member from Instructor to Assistant Professor at the University of Pittsburgh. Importantly, completing these short terms goals via this K01 award begins to address long term goals 1 - 3, and puts me on a trajectory to accomplish the remaining long term objectives. The current training plan is also augmented with [[formal courses that address each of the major training goals]], interactive workshops focused on scientific career development, and teaching experiences to further broaden my career skill set. The Department of Psychiatry at the University of Pittsburgh's School of Medicine is an ideal environment in which to accomplish these short and long term goals. This department is a national leader in clinical research, treatment and training. Under the primary mentorship of Dr. David Lewis, Chair of Psychiatry, I will have full access to his laboratory and all of the infrastructure support required for the current application. Working memory is a core cognitive function impaired in schizophrenia that depends upon activation of prefrontal cortex (PFC) circuitry. Accordingly, individuals diagnosed with schizophrenia show reduced PFC activation while performing working memory tasks. This lower PFC activation appears to be an integral part of the disease pathophysiology, and not simply a reflection of poor performance. Thus, the cellular and circuitry alterations that underlie lower PFC neuronal activity in schizophrenia must be determined in order to identify appropriate therapeutic targets. This research proposal focuses on determining which of two discrete possible molecular/physiological disturbances is a likely upstream event leading to PFC impairments in schizophrenia. Supporting neuronal excitation represents the largest energy-consuming activity in the brain, supplied by ATP synthesis in mitochondria via oxidative phosphorylation (OXPHOS). Accumulating evidence indicates that expression of the terminal and rate-limiting OXPHOS enzyme, cytochrome c oxidase (COX), is lower in the PFC of schizophrenia subjects. Thus, the research goal of this K01 application is to determine the underlying mechanism contributing to lower levels of COX in the PFC of schizophrenia subjects. Lower COX could be a consequence of chronic reductions in neuronal excitation that lower ATP demand in the affected neurons (Hypothesis 1), or due to deficient COX expression that impairs metabolic capacity in all neurons (Hypothesis 2). Distinguishing between these alternatives has important implications for identifying appropriate therapeutic targets for cortical dysfunction in schizophrenia, as H1 indicates targeted enhancement of excitation, whereas H2 indicates enhancing COX expression to recover mitochondrial respiration. In order to test which hypothesis is most supported by findings in affected individuals, laser microdissection is used to dissect samples of three distinct neuronal populations and quantitative PCR is used to measure the expression of COX-related transcripts (Aim 1.1), and stereological electron microscopy is used to quantify mitochondrial abundance and morphology (Aim 1.2) in the PFC of schizophrenia and healthy comparison subjects. However, because cause- and-effect relationships cannot be determined using human postmortem tissue, experimental animal models are used in Aims 2 and 3 to directly test the mechanisms of H1 and H2. In Aim 2, DREADD pharmacogenetic technique is used to induce long-term reductions in PFC pyramidal cell excitation, and each measure from Aim 1 is assessed. In Aim 3, viral delivery of shRNA approach is used to impair COX availability in the PFC, and each measure from Aim 1 is assessed. Together, these Aims provide a definitive characterization of the disease phenomenon, and extend to proof-of-concept studies in animal models to provide compelling, convergent and conclusive data regarding which mechanism is operative in the illness.
 描述(由适用提供):精神分裂症是一种复杂的疾病,缺乏有效的治疗选择,用于患者经历的普遍性和使人衰弱的认知障碍。我对确定基础电路的改变非常感兴趣,这会导致这些障碍,因此自从我的博士培训开始以来,它们就可以得到治疗。尽管我的重点是单数,但用于研究这个问题的方法和概念框架在我的科学生涯中发展了,而这种K01应用代表了这种进化的下一个主要步骤。该K01应用程序包括研究,临床, 和职业发展,以及教学/培训机会,以最大程度地提高我成功过渡到独立性的能力。我的长期职业目标是1)确定并描述导致精神分裂症皮质功能障碍的分子和细胞变化,2)确定使用动物模型的这些观察到的病理学的可能原因,3)使用这些发现来开发基于病理生理学的药物学治疗基于病理生理学的药物治疗,以在精神分裂症患者中建立独立研究,4)博士后研究员为下一代科学家和创新者做出贡献。我的短期职业目标包括1)掌握了提出的研究技术,包括激光捕获来自人类和啮齿动物皮质的单细胞群体的显微解释,人类前额叶皮质组织的电子显微镜线粒体分析,以及由Designer Dradigs(Dreadds)范式范式专用的SHRNA和SHRNA和Designer受体。 2)确定疾病发现是原因,补偿,后果还是混杂的主实验设计; 3)成功地作为教师从讲师到匹兹堡大学助理教授的过渡。重要的是,通过此K01奖完成这些短期目标开始解决长期目标1-3,并使我走上了轨迹,以实现其余的长期目标。当前的培训计划还通过[[正式的课程解决了每个主要的培训目标]],互动式研讨会,专注于科学职业发展以及教学经验,以进一步扩大我的职业技能。匹兹堡大学医学院精神病学系是实现这些短期和长期目标的理想环境。该部门是临床研究,治疗和培训的国家领导者。在精神病学主席戴维·刘易斯(David Lewis)的主要心态下,我将完全访问他的实验室和当前申请所需的所有基础设施支持。工作记忆是精神分裂症中损害的核心认知功能,取决于前额叶皮层(PFC)电路的激活。彼此之间,在执行工作记忆任务时,被诊断出患有精神分裂症的个体显示PFC激活减少。这种较低的PFC激活似乎是疾病病理生理学不可或缺的一部分,而不仅仅是表现不佳的反映。必须确定精神分裂症中PFC神经元活性较低的细胞和电路改变,以确定适当的治疗靶标。该研究建议着重于确定两个离散的分子/生理障碍中的哪些是可能导致精神分裂症PFC损害的上游事件。支持神经元兴奋是大脑中最大的能量消耗活性,该活性是通过氧化磷酸化(OXPHOS)在线粒体中的ATP合成提供的。积累的证据表明,在精神分裂症受试者的PFC中,末端和限制的Oxphos酶的表达较低。这是该K01应用的研究目标是确定在精神分裂症受试者PFC中导致COX较低水平的潜在机制。较低的COX可能是神经元兴奋的慢性减少的结果,该神经元兴奋会降低受影响神经元的ATP需求(假设1),或者是由于缺乏COX表达而导致的,从而损害了所有神经元的代谢能力(假设2)。区分这些替代方案对于鉴定精神分裂症中皮质功能障碍的适当治疗靶标具有重要意义,因为H1表明靶向增强兴奋性,而H2表示增强COX表达以恢复线粒体呼吸。 In order to test which hypothesis is most supported by findings in affected individuals, laser microdissection is used to dissect samples of three distinct neuronal populations and quantitative PCR is used to measure the expression of COX-related transcripts (Aim 1.1), and stereological electronic microscopy is used to quantify mitochondrial abstraction and morphology (Aim 1.2) in the PFC of schizophrenia and healthy comparison主题。但是,由于无法使用人类后组织组织确定原因和效应关系,因此在目标2和3中使用了实验动物模型直接测试H1和H2的机理。在AIM 2中,Dreadd药物遗传学技术用于诱导PFC锥体细胞兴奋的长期减少,并评估AIM 1的每种度量。在AIM 3中,使用shRNA方法的病毒输送来损害PFC中的COX的可用性,并评估了AIM 1的每种度量。这些目标共同提供了对疾病现象的明确特征,并扩展到动物模型中的概念验证研究,以提供引人注目的,收敛性和结论性的数据,涉及哪种机制在疾病中运行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JILL RENEE' Glausier其他文献

JILL RENEE' Glausier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JILL RENEE' Glausier', 18)}}的其他基金

Neural substrates of elevated striatal dopamine synthesis and release in schizophrenia
精神分裂症纹状体多巴胺合成和释放升高的神经基质
  • 批准号:
    10409842
  • 财政年份:
    2021
  • 资助金额:
    $ 16.01万
  • 项目类别:
Neural substrates of elevated striatal dopamine synthesis and release in schizophrenia
精神分裂症纹状体多巴胺合成和释放升高的神经基质
  • 批准号:
    10300776
  • 财政年份:
    2021
  • 资助金额:
    $ 16.01万
  • 项目类别:
Excitatory signaling and oxidative phosphorylation alterations in schizophrenia
精神分裂症的兴奋性信号传导和氧化磷酸化改变
  • 批准号:
    9248449
  • 财政年份:
    2016
  • 资助金额:
    $ 16.01万
  • 项目类别:
Excitatory signaling and oxidative phosphorylation alterations in schizophrenia
精神分裂症的兴奋性信号传导和氧化磷酸化改变
  • 批准号:
    9108013
  • 财政年份:
    2016
  • 资助金额:
    $ 16.01万
  • 项目类别:
Deficits in cortical basket cell signaling in schizophrenia
精神分裂症皮质篮细胞信号传导缺陷
  • 批准号:
    7807659
  • 财政年份:
    2009
  • 资助金额:
    $ 16.01万
  • 项目类别:
Deficits in cortical basket cell signaling in schizophrenia
精神分裂症皮质篮细胞信号传导缺陷
  • 批准号:
    8050160
  • 财政年份:
    2009
  • 资助金额:
    $ 16.01万
  • 项目类别:
D1 AND D5 RECEPTOR SIGNALING IN MONKEY PFC
猴 PFC 中的 D1 和 D5 受体信号传导
  • 批准号:
    7958178
  • 财政年份:
    2009
  • 资助金额:
    $ 16.01万
  • 项目类别:
D1 AND D5 RECEPTOR SIGNALING IN MONKEY PFC
猴 PFC 中的 D1 和 D5 受体信号传导
  • 批准号:
    7715760
  • 财政年份:
    2008
  • 资助金额:
    $ 16.01万
  • 项目类别:
D1 AND D5 RECEPTOR SIGNALING IN MONKEY PFC
猴 PFC 中的 D1 和 D5 受体信号传导
  • 批准号:
    7562619
  • 财政年份:
    2007
  • 资助金额:
    $ 16.01万
  • 项目类别:
D1 AND D5 RECEPTOR SIGNALING IN MONKEY PFC
猴 PFC 中的 D1 和 D5 受体信号传导
  • 批准号:
    7349285
  • 财政年份:
    2006
  • 资助金额:
    $ 16.01万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Aging Mitochondrial Interactome
衰老线粒体相互作用组
  • 批准号:
    10658412
  • 财政年份:
    2023
  • 资助金额:
    $ 16.01万
  • 项目类别:
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
  • 批准号:
    10864185
  • 财政年份:
    2023
  • 资助金额:
    $ 16.01万
  • 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
  • 批准号:
    10687401
  • 财政年份:
    2022
  • 资助金额:
    $ 16.01万
  • 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
  • 批准号:
    10758687
  • 财政年份:
    2022
  • 资助金额:
    $ 16.01万
  • 项目类别:
Activity-dependent energy homeostasis at the presynaptic terminal
突触前末梢活动依赖性能量稳态
  • 批准号:
    10036325
  • 财政年份:
    2020
  • 资助金额:
    $ 16.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了